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ABSTRACTZT

This report relates to the vibration of aeroplane structures excited
by jet-noise or other random pressures. A review is made of those aspects
of vibration and transritted poise which may be alleviated by increasing the
structural damping. The damping of conventional untreated structures is then
considered, measured values of the damping of model anqd full=scale structures
being discussed in the light of previous studies (by the author) of acoustic
and rivet damping.

The common practice of judging a damping treatment bty the loss factor
increment it produces is then shown to be inadequate for contemporary
treatments and thin-plate structures. Altermative Mcriteria® sve therefore
derived which describe more adequately the ~ffectivencss of the treatment in

attenuating certain random and hermonic vibration phenomena. These have heen
used tc compare two commercial unconstrained treatments and to estimate

the reduction of random stresses in an aeroplane structure whzn the treatments
are added.

The response of a itwo-dimensional flat sandwich plate with a damped
core has next been enalysed. The dependence of the model loss factor,
stiffness and criteria values on the wavelength and core properties has teen
studizd. Optimum core thicknesses and core properties nave been fcund which
minimise the response. Random stresses in a structure with thick~cored
szndwich plating have been estimated to be not less than 10% of those in a
solid-plate structure of equal wzight.

Harmonic experiments on small sandwich specimens have confirmed the

theory for the loss facter and stiffness., The special apparatus and technijues

of measurementy developed for the experiment have been used to assess three
comrercial sandwich specimens.

A new approach has been initiated to estimate the random response of

a very heavily damped gystem. Its validity has been confirmed for simple
random excitation conditions by experimerts on the sandwich specimens.
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Chapter 1
Introduciion

1.1 The_Context of. the Problem

The modern high apeed aeroplene is generally known as a prolific
source of disturbing noise. On the ground, its jet engines produce noise
levels which have been quoted as high 28170 db¥. At high speeds, the fiow
of air over the vehicle is in a turbulent stale, generating sourd and-
exerting on the aeroplane surface hydrodynamic pressures of up to 145 db
at M = 1.5, Whether stationary on the ground or flying fast through the
air, the structure is therefore subjected to intense randomly fluctuating
pressure. Since the structure is relatively light and flexible, it
responds readily to these pressures. In consequence, noise is transmitted
+hrough the wells, inducing passenger discomfort and fatigue, and randormly
varying stresses are genersted within the structure, leading to metal

fatigue.

A reduction of the travsmitted noise or of the fluctuating stresses
can be achieved by wvarying the three basic structural parameters, mass,
stiffness and damping. Increasing the mass is the well-knowm method of
decreasing fransmitted noise, but for obvious reasons is no acceptable
sotution. Increasing the stiffness, although reducing the stresses in
sore parts of the structure, has been found in practice scmetimes to
increase them elsewhere. Furthermore, the extient to which the stiffness
¢sh be increased is limited by the amount of extre weight that may be
pormtted. Increasing the damping can ™= shown ‘to be beneficiai to the
stresces in all cases, and under some conditions also to the transmtted

sound. -

Until recent years, the damping was not ccnzidered to be a

variable, but with developments in damping treatmwents, large increases
of demping have become possible with relatively little or no increase in
weight. Pontemporary treatments involve adding a layer of visco-elastic
material {asually a high-polymer) to the plates and beams of ‘the structure.
As the seructure vibrates, the material wmdergoes fluctuating strains,
dissipates energy and damps the motion. Recent developments have led to
tte manufacture of materials having greater damping capacities than
hithervo, which are retained over broad ranges of temperature and frequency.
Further increases of damping efficiency have resulted from develcpments

in tke techniques of using the materials, notably in the method of
constraining the layer tc distort in shear, instead of disterbing only

in flexure, as previocusly.

The purpose of this report :is to conduct investigation into the
benefits which might acerus by using certain damping treatments in
aeroplane structures subjected to noise excitetion. It must first be
proved that increasing the damping is, in fact, beneficial. This is S0,
of course, provided the random response of the structure is predominantly
resonznt. To establish this, and also tw give insight into the problexns
of the mest:.ga’amn, we shall firstly discuss the nature of the strictures
and their modes of free vibration, the nature of the excitation fields and
also of the corresponding structural response.

#oise levels quoted are in db's, referred to .0002 dynes cm"z
i.e. db’s = 20 log %10 Pras. /0002
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1.2 The Nature of the Structure and its Modes of Ngtursl Vibration

A typical fuselage structure consists of a thin cylindriecal shell

rei forced longitudinelly by stringers and circumferentially by frames. Typical -
spacings may be 4 - 10 in, between the stringers and 6 - 18 in. between the

frames. The stringers may have an open or closed section and sre riveted or
bonded to the skin. Frames are usuzlly of open section and are riveted to

the skin, The stringers are continuous through the frames, being jcined to

the frames at the interseciions by cleats which add torsionsl stability to the
stringers. The modes of vibration which are significant in noise transmission :
and acoustic fatigue may, for convenience, he clessified as long wavelength :
(or 'overall!) modes, and short wavelength (or 'local!) modes. (The clessification )
is based essentially on the methods and restrictions used to calculete the modal
frequencies, rather than on essential differences in the nature of the modes).

-

R PR

The overall modes involve distortion of the whole cross-secticn and .
length., The distorticn is periodic around the circumference and along the
length. The frames, stringers and skin all take part in the distortion, a
tyrical mode of which is shown ir Figure 1. Longitudinal half-wavelengths may
occupy severel frame spacings. The frequencies of modes of this type have
been enalysed by P.R. Miller (1), and some typical values ars shown in

Figure 2.

[IFR IR

The local modes have longitudinal half-wavelengths equal to the frame
spacing, nodal lines existing at each frame station. The radial displacements
around the circumference of the four simplest modes of this type are shown in
Figure 3, where a cylinder of infinite radius is shown for simplicity. Lir (2)
hes discussed and arnalysed these local modes. It will be noticed that tie
stringer displacement in any mode is either flexural or torsional, Lin's work
having shown {rather dubiously) that for this class of mode flexural and
torsional displacements of any one strirger do not oceur simultaneouslye.

For the Caravelle fuselage, the natursl frequencies of modes A and € of

R A

Figure 3 are approxirately 700 cps and 1000 cps respectively. ,5

An intermediate class of mode exists with nodal lines at the frames ’ ) 3
and with circumferential half-wavelengths grezter than the stringer spacing. K
Flexural and torsional displacements now occur simultaneously on one strir-er. s

Ford (3) has showrn that the frequencies of these modes lie between the frequencies -+
of modes A and C of Figure 3, - 2

It is clear that these free rmodes of vibration and their natural
frequencies deperd on a large muber of structural varisbles, viz. the skin
thickiness, the frawe and stringer spacings, the stringer ilexural and torsional
stiffnesses and shear centre location, the frame flexurel stiffness, the cylinder
radius and effective length. The higher order modes will be influenced
considerably by "secondary™ variables such as rivet stiffness, leat stiffness -
and cross-sectional stiffness cf the stringers and frames.

.
s e

The structure of a tail-plane or elevator consists of & tkin skin

covering reinforced in the spanwise direction by stringers, and in the chord-
wise direction by thin plate ribs which join the top and bottom surfaces. The .
modes of vibration which are significant in acoustic fatigue (4) are of the
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form shown in Figure 4, where the section is spanwise along the structure.
In the chordwise direction the modes of displacements will be similsr to these -
of Figure e The stiffness of the rib relative to the stiffness of the surfacs
skins is ooviously one of the most important parameters governing these

modes of vibration, typical frequasncies of which are shown on the Figure.

An elevator-structure is basically similar to that of the tailplane, -
but there will be only one or two spanwise stringers. On the Caravelle )
tailplane (with one stringer) the 18 S.W.G. skin pansls were approximately

rectangular, naving sides of 5 to 9 in. Their regsured matural frequencies
were in the region of 230 to 340 cps.
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1.3 The Nature of the Excitation

ERE TR DI

1.3.1 Jet Noise

The pressure fluctuations generated by a jet ar essentially random :
in character, deriving from a rand™~m arrzy of moving random sources. These
sources originate in the turbulence in the jet as it enters and mixes with
the surrounding air. Associated with the turbulence are both hydrodynemic
and acoustic pressure fluctuations, the former being predominant in the
region of the jet itself and near the jet boundary, and the latter predominating
in regions far from the jet (say, seven diameters and more away from it)..-

In the intermediate region the effects of each are comparable.

B N .
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The randomness of the pressure is such that its continuous frequency”
spectrum may have appreciable components at frequencies as far apart as
50 and 500C cps, although the really damaging intensities only occur between
100 and 1000 cps. Typicsl spectra measured at two points -near an Avon_ jet
engine (5) are shown in Figure 5. These show the generel feature that the
peak in the spectrum is quite broad and moves to lower frequencies as the ;5
distance from thejet inereases. '?;»

v Temt

The scurces of the high frequsncy components are sirongest near the
jet-orifice, whereas those of the low Irequencies are strongest further . :
downgtream in the 'mixing region' of the jet. The nature of the acoustic i
sources is such that the radiaterd sound is quite strongly directional. e
The maximum total noise is radiated out from the jei along lines at o
aporoximately 35° to the jet exis. The maximum high frequency radiation is
along lines inclined at larger angles then this. On account of this
directionality only limited regions of the whole azeroplane structure are
prone to acoustic fatigue.

LISty
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The response of the structure to these pressure fluctuations depends
not oniy upon the pressure specira, but also upon the spatial correlation of
the pressure over the surface of tke structure. One mcde of vibratior can
be excited to a much greater extent than another simply due to the nature
of the variation of the correlation coefficient in space compared with the
model .displacement pattern. The actual forms of .the correlation spatial
distribution will not be discussed here, but the reader is referred to the
work of Callaghah, Howes and Coles (6) for jet engine correlation measurements. ]
Clarkson (4) also gives a summary account.of correlation measurements. -

..;.a,,‘,.
. . T ¥
1o, Meoane afe srwsen oy

I’

"

T Y
&

v RIS
LT I (AT Lo R ki a - . +
P VN IR SN N (PN

m
H B ARTRRT. SN




1.3.2 Boundary Layer Preggure Flutuatdion

The normal. pressure fluctuations on a surface adjacent to the
boundary layer of a high speed flow originate in the hydrodynamic pressure
assoclated with the turbulent velocity fluctuations. The turbulence may be
regarded as eddies being convected downstream at a mean speed of about 0.8
times the free stream velocity. As in the jet boundary, these eddies build
up to a maximm and then decay as others are formed, and are larger in tke
thicker boundary layers.

The root mean square value of the normal pressure fluctuations exerted
on an aeroplane surface has been found to be apvroximately 0.6% of the free
stream dynamic pressure up to a Mach No. of about 1.2, and is virtually
independent of the boundary layer thickness (7). The mean square pressures at
the front and rear of an aeroplane fuselage are theérafore approximately -
equal. In db's, the empirical pressure level is

A0 !ogo Ueas 4+ 105 db.
100

i.e. 143 db at 600 mph and at sea level.
This is not so damaging to the structure as jet noise of the same

overs1l intensity, as the spectrum tends to be flat from low freguencizs up
to a certain ¥cut~off frequency®, given by

£(cps) = 0.2 x Free stream velocity
cps Boundary layer displacement thickness

Beyond this frequency, the spectral level falls off quite steeply. At the . -
rear end of a large aeroplane flying at 600 mph the boundary layer th:.clmess -
may be 6 in. (the displacement, thickness is about 1/10 of this), giving a cut=

off frequency of about 7000 cps, rising to 42,000 cps upstream where tte

thickness is only 1 in. Upder these two conditions pressure spectra swuch as

those of Figure 6 are obtained.

Space correlation measurements in fullescele boundary lsyer pressure
fields have not yet been made. Lsboratory measurements suggest that a cuyrve
of a non-dimensional narrow. band space correlation cosfficient may be cons‘t:*ueted,
from which may be obtzined <he correlation coeZficient in sny frequency band; -
and at any speed znd separai. n in the streamwise direction. Some measurements
have been summarised and ¢iscussed by Bull{7).

1.4 The Nat.ure of the Re.gnonse of the Structure

A system subjected to randomly varying presswre will respond in a
random manner. Although the rendom pressure may have a flat power spectmm,
the response spectrum inay be 'peaky’, having been modified bty the recepuance
of the systex. The peaks in the spectrum oceur at the natural frequenc:.es
of the system;, and the height of each is proportional to the squarée of the
damomg of the corresponding natural modz. HNow the total mean square fesponse

is proportional to the area under the "1ole response power spectrum. If the
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peaks are large, the area under ttem will form the major-part of the total T
mean sjuars response, which may then be described as ‘predominently resenant’s
It is then critically dependent on the damping of the modes.

It will now be- shown that some of the responses of the structures of }
para 1.2 are indeed predominantly resomant, and may therefore te attenuated
by increasing the damping. By "résponses"™ are implizd .such quentitiés as the ) .
fluctuating stress in the structure, the sound levels transmitted through the
structure and acceleratiois at points on the structire, ete., ste.

That structural stresses have the resonant characte® has been showvn
conclusively by Clarkson and Ford (8) in their ewxperimental analyses of
jet-excited fuselage and tailplane vibrztions. Figure 7 and 8 show typical
spectra of stresses measured at the centres of a fuselage and tailplane
panel respectively. The primary peek of Figure 7 hes been shown to be due to
the excitation of the stringer torsion mode of Figure 3 in the neighbourhood
of its natural frequency. The erea under the spectiral curve in the vicinity
of the pedk forms-alarge proporiicn of the totzl area undeér the curve,
and the stress is therefore predomizantly resopant. The peak in the tailplane
stress spectrum (Figure 9) clows 2n even stronger resonant effect, the mode
of vibration having been identified as that of Figure 4s Similer strengly
resonant spectra have been obtaived from measurements on elevator panels,
tailplane ribs and stringers, and fuselage frames. All emphasiss the
predominance of the rescnant portions in the total spectra.

Another significant feature of Figures 7 and -8 is that the response
derives primarily from the excilation of a very few modes. Although #his is not
always the case, 1% does have an important bearing on the problem of designing
the most effective ype of damping treatment, for some treatments.give.their
maximum benefit in -certain frequency and wavelength Trangese ) N

Convineling experimental evidence is not yet forthcommg that transmi vtad
boundary layer noise is predominantly resonant. Hwever, the resu.ts of -
several independent theowetical investigations (9, 10, 11) have shown that dnder
all conditions the transmitted noise has pronounced pesks .in itz spectnm at.
the resonant frequencies of the plate structures considered. :ﬁz..s, in 1»5911‘.
does not indicate that the total mean suare noise is predomma.nﬁy resonant )
(see Chapter III para. 3....2), but under the so-colled Pcoinsidenee™ transmission
condi.t:.ons which can occur at hizgh speeds, the peaks are further mgniﬁﬂ&
relative to the non-resonant portions of ihe spectrum,. and the peaks then
domingtd the spectrum, X

“Coincidence™ conditions obtain whenever ths convectlon velacity of
the toundary layer presanre fluctuations coincides with the phase velocity
of a free flexural wave in the gkin plating. L»larg\ﬂ peak. then exists.din the.

spscirum of the, genera]ised force corraspoading t» that mode,. at the modal
natural freauency. The vibratica amplitude and it sound. ra“d..ated by the
plate in tha% mwode are correspondingly megnified.. If the plate is (si:gply)
supported on frames which are 7 in. apart and has a.fundzmental nataral
frequensy of €0 ¢ gps, the laowest neces.,axy con-fectzon velccity 45 onq
70C £t. per sec. Coincidenc‘-' tra.s smission is *herefore quite. like.y 1o occm'
in quite slow aeroplanes, althoagh ‘the trans'nittel noise 4.evsls wﬁlothe.n
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It can be shown that the magnitvde of the pesk 4n *tne generalised
force spectrum depends on the pericd during which ap glement of turbilence
maintaing 4ts ddentity. d.e. on its "lifetime®, Ths thicker ths ?honnaa:y
layer, the longer the 1ifetime and the smiller is the rate of decay of the
correlation. This, ir turn, cac be shoun to imply & greater pedk 3n the .
force spectrum. Tbke resonant portion of the xosponse therefore -increases -
relrtive to the w. -resonant portion, and <he demping of the plate pisys
an inereasing par * 3a limiting the response. In particular, Dyer (9) shows
thet ynder eoincideace conditions, the mean square noise pressure transmitted
by a single mode is 3nverselY yroportional to the gguare of the damping for
long lifetimes and high natural frequancies, tut only %o the Lirst pover of
the damping for short lifetimes. This serves to show 'fhat the effectiveness
of the damping may be governed by the correlation characteristics and 1ifetime
of the excitizg Tfield, as well as by the other obvicus field chargetsristics
2:4 structursl properties.

b e memn s i

Vherese oniy a few modes may coniributs apprecisbtly 4o the jei-
excited stress specirum, meny modes may contribute %o the transmitted noise

! spectrum. This has besa shosh by Kraichnan's an._ysis (11). Hewever, if
coincidence transmission is occurring, the most important wodes will be those
®closest®™ to the coincidence ccnditions, and the noise spectrum can be
expected 1o have its maximme value dn the corresponding frequency range. The
wavelengths and frequencies of these wodss will be ‘the significant, parameters
in the desizn of an opbimim damped structure to attenuate the molce.

oy e s

In an investizxtion into the effect of damping “brea'bx}ig'ntx‘ on
stroctural fatigue 3ife, it 35 mecessary to now specifically the rsgponsa
quantities on which the fatigue 1ife depends. Acoustic fatigue failures fa
the skin plating of & structire generdlly occur =s ccracks slong the Line of
rivets attaching the skin to the stringers or ribs. The stresses causi.ng
these failures are ‘the surface bending stresseg -in the skia generated 'ty
the piate flexural motion, acd consideralily magnified by 10::&1 stress .
concentrations at the rivets. Failure of the nvetxs thanselves ‘dlso -oecuY's),
the heads breaking off wder the combined action of tne Mjneﬁn
forces and the normal exciting pressures. I-‘at’.gue crac]dmg 3in stringers and
Tibs occlrs slong the iutersections of theix attachment £langes and webs. The
stress causing thls i= proportiopal: o the Joedl ”bendng Tomert across the.
cross-section, which, in turn, is proportionsl to the benaing ‘moment in the
skin surface,.

1 depends on the :stat:.sti&.a’l propertles of the tempordl stress var*..aﬁcn, 3
o including its root-meana-square value. When fae stress ilnctuati,ons are of
i +the predominantly resonant form involving only one mede-of vi‘tmatiou, the .
waveforz may be described as ’«msaiﬁal -with 2 randonly varying amplitnde", s
L the magnitudes of the yearvalug_s :t’ornﬁ.ng A hyleigh Distribution. The. . -
N statistical pmpertles of the stress are then eomplete’y- characterised By the X
' vatural frequency and the roct-mesn-square wvalus, Accordingly, it is f S

sufficient {under the abova:.conditions) 1o assess the fatigue life 1 Anomg /
- only the na‘h:ral *‘regusncyanﬂ the Totes. valus -of the stresse
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1.5  The Propoged Dsmping Treatmentg

Having established that under some conditions the responses of the AN
structure are resonant, and that increasing the damping must thersfore b
beneficial, we now discuss the particular treatwents vhich can be considered; -

As stated already, these involve adiing %o thie structural surface a layer of

material having a highdamping capacity. Structural vibration imposes fluctuating
strains upon the layer which disslpates emergy and damps the vitration. ~
Treatments may be classified as ™unconstrained layers® or ar ®constrained "
layers¥. ’ s

An unconstrained layer is initially sprayed or trowelled on to the .
vibrating member in a wet state and is left with one free, or ™unconstrained?
surface. On drying cut, it bscomes quite stiff and when the member bends, -
the layer undergoes direct bending strain (see Figure 9a) and so dissipates 3
energye. As stiff materials are required for maximum damping, “developments T
for this purpose have 1sd to the use of soft resins (PVC, PVA ete) which :_
have been stiffened by vermiculite or china-clay fillers. complex -~ -2 F
Young®s Modulus of one such material (Aquaplas) is about 108(1 + 1 0.35)1b.ir, o
at about 200 cps. When aoplied to an aluminjua plate t> a thicknass equal to A |
that of the plate, a flexural damping ratio of atout 0.12 is obtained
(= actual damping of a flexural mode 4 criticai damping). ~ -

A conatrained layer consists of a damping material sandiriched betwesn \
two plates. As the plaies bend, the layer is constrained to undergo shear
strain, by virtue of which energy is discipated. The "double-skin® configuvation . ?
consists of outer skins of equal fhickness, the interfacial damping layer .being -
anythicg from 'very thin' to three times the plate thickness. This configvration
must be pre-fabricated and built into the structure, ab initio. *Sound -
damping tape®, on the other hend, may be applied to an existing plate siruciure
simply by pressing it on. It consists of a thin, pressure-sensitive, high
damping adhesive layer backed by a thin metal foil. It is used extensively
in certain airiiners for sound insulation.
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The essential shearing mechanicti of the constrained layer is
i1lusirated in Figures 9b.and 9c. For most practical applications a soft
material is required for a constrained layer, but there is an optimum layer
stiffness for maximun damping. )

Ts XS

The advantage posseszed by unconstrainsd layer treatments is that they
may readily be used as an.emergency measure on existing structwes. They ray
be applied not only to plates but slso to stringers and frumes to demp their -
flexural motion. Their disadvantage is that they are usually hygruseopic .and
the moisture gbsorbed may promote corTosion fatigue on the light ‘alloy
surfaces. The layers are not readily removable for fatigué inspection, and
once removed cannot be used again. Constrained layers shown promise of

- providing much higher damping than unconstiained layers, (flexural damping
ratios of C.50 have been measured) and do not suffer from moisture
absorpticn as the constraining foil or clate is impermeable. Damping tape
is readily removable for inspection purposes, and afterwards may be replaced,.
but it may only be used for damping plate flexural metion. The double-skin
configuration is similarly resiricted acd should require no internal inspzction..

ts prime requirerent is for .an extremely strong bond between plates snd inter-

face. This is met admirably by the "Eycadamp” sandwich plate which has recently
bern marketed. The main problem associated with its use is in the aitechmerts
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to the reinforcing and stiffening structure. Riveting restricts the essential
shearing displacements between- the two plates, and so0 reduces the damping

the rivet may couse the rivet to loosen in time. However, it is claimed ‘that
Hycadamp may be bonded to reinforcing members, and with sultable production
techniques the above twd objections should be over-ruled. -

I% is important to recognise that the addition of a damoing layer to
a plate may chenge the plate flexural stiffness very considerubly. A layer
of Aquaplas on an eluminium plate double3 the stiffness when: the Aquaplas weight
io one half of the plate weight. On the other hand, the stiffness of a
sandwich plate with a thin sft layer may be only one quarter of that of a solid
piate of equal weight. If the layer is thick andstiff, the stiffness of the
plate may be several times greater than that of the solid plate.

Reference has been made to the complex Young!s Modulus of Aquaplas. It
is usual %o represent the dynamic (harmonis) moduli of linear damping materials
in this form with the notatien

Young's Modulus = E.  =FE(1+ ig) = E'+« iE" ,

and
Modulus of Rigidity =G =G(1 + i8) =G + iG" .

‘E! and G sre kuown as the "storage moduli", E* and G* as the "1oss ‘modili®,
and’ ﬂtz d and B as the ®loss factors®.

B Each of the terms B!, ‘g are freqnency dependent, varying
in the forms of which figm es 8 and 11 are typical. The use of the complex
stiffness does not therefors imply that the energy dissipated per given strain
cycle (which is proportional to E? or G"). is the same for all frequencies.

It will be noticed in figuresl0 and 11 that the meximmm loss factors
occur at frequencies at which the storage modulus is ¥arying most rapidly
with respect to frequency. This is an inevitable characteristic which stems

t from the molecufar relazabion mechanisms at the root of the visco-elastic

. ) tehaviour. The frequency at which the maximum loss faciors occur can be
adjusted by snitsbly mixing and compounding different materials. Most
materials developed for damm.ng treatments have this peak between. 100 cps
and 3000 eps,. which is in the same region as the ppaks in jet—noise speci:ra.
The' breadth of the peaks can be adjasted in the same way. Iu general, hovever;
broadening the peak reduces the maximim loss factor but.also reduces the
rate of change with freguency of the storage mioduliise. ) . .

The general effect of increasing the temperature-of the mterigl is to
move its curves of sta"age moduli and’ loss factors to: higher freqaemies,
without chang;mg the maximum &nd ninimum values.. l)acreasing the temperature
moves the -curves to lower- i‘requencies. As mgy therefare be expecteti, the
materials-with the flattest curves ofJoss Iactor vs. i‘requency, also show
the.least variation: of loss factor anid: storage modulus vith temperature:
chenges.. Materisls:desigaed to-Hiwe ‘a broad ”temperahxre “bandwidth® therefore
have lowsr- damping properties: than "narrow ‘bandwidth® mteria;s. Smce :
aeroplane strucmres have %o- operate between I_arge extremea of twpemmre,

effectiveness. Creep of the damping layer under the compressive stréss induced by
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the desirability of broad temperature-band materiels is obvious.

If the temperature changes are too great, the physical nature of the
polymer may change. e.g. dropoing the temperature will eventvally change it'from
an amorphous to a crystalline material. The simple lateral translation of
the curves is then no longer applicable.

1.6 The Problems of the Pregent Investigation

L i 1
R T 200\ S - e

The stated purpose of this report is to investigate the bennfits
accompaxv:mg the use of vertain damping treatients. Particular attention
will be given to the use of Aguaplas and the double-gkin damping configuration,
with perticular reference to their effects on structwral stresses. Only
limited reference: will be made to the effects on scwwi transmissions. It
is further requized to determins whether certain Toptimwm configurations®
exist which will minimize the response, “optimun configuration® implying either
i an optimum thickness or stiffness of the damplig material.

LD by ek /A
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The fundamental problem involved is firstiy to determine the response
of a multi-freedom stiffened structure to the random excitation, and then to
determine the dependence of this respomse on the stiffness, mass and damping
of the damped elements of the structure (i.e. of the skin plating, in our
case). The damping of the plating, mereover, may be very teasyy, introducing
problems into the analysis which iravi no® hithertc beem significant.

A T R

A general theoryfor calculat’ng th2 random resronse has been presented 5~
tyPowell (12). Here, the response is unalysed in ferms of the normsal modes of :
vibration of the structure, which must ti:cefore be deternined at the outset.
The generalised response in each mode is the» obbaiped in terms of the
corresponding generalised forces, stiffnesses, masses vud dawping coefficie-"-

Consider now the problém of examining the effect on the n\Sponse of
gystematically changing, say, the thickness or dynamic prcvpe‘x:tfeaa of a damping
layer on {or in) the -skin plating. When this change is mede, the stiffness
and mass of the whole plate are changed. This in turn, whanges the modes
of vibration and the corresponding coefficients of stiffnecss, mass and
damping, These coefficients depend in a very complicated wey upon the
individual stiffnesses and dimensions of the stringers, fismes snd skin
plating. To celculate the total response of one speciﬂc shoucture is &
formidable enough computation. To calculate it for a giver sub-structure of
stringers end frames, but for a range of different dsmped skin platings is -
more formidable still. To proceed to investizate the éffects of different
stringers and frames is out of the question at the present time.

On account of these difficulties, the approach of this report is to -
ccnsider the damped plate 2lone, responding in ¢ single mede to a smple i
_random pressure Iield. I%s r.m.s. respoase must b3 found in terms-of the- . -
generalised coefficients, which vary with the different damping treatments i
_ -and-configurations. The response will be comparsd with that of a plain -
- plate: (1.e. with no damping treatment) which has a modal’ damping ratio equal
" -to ‘that of a typical, real, uatreated struzture. Tke ei‘fect of replacing this'
plain plate by ‘the damped plate mgy then be- expressed’ as' a. percentage reduction
> of rem.s. disPlacemnt stress, transmitied noise, etc.

. In representing the skin plating of the real structure by this simple 7
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platé, an idealisation of no mean order is introduced. Thé approach.may be
expected to yeild estimhtes of reductions which are appfoximately correct. )
provided that in the significont modes of the real structire the plate energy
is much greater than the energy of the stringers and frames, Whether or not
this is satisfied, it can be stated categorically that the reductions found -
in the simplified approach must be greater than those actually achieved. The
reductions found for an optimum configuration of the simplified model will
therefors be the greatest possible. They will set-an "upper bound" to. the
effectiveness of the treatment, beyond which no further improvement may be
obtained. )

. For the comparison mentioned above, some typical values are required
of the damping ratios of the significant modes of vibration of untreatad
structures. The sources and nature of this "initial damping" ere considered
in Chapter II. Soms measured and caleulated values ars also discusszed.

.In former investigations into the demping of~plates, the
effectiveness of a-damping treatment hus always been asséssed by the
magnitude of the flexural loss factor it produces. (The flexurnl loss
Tactor is equal to 2 x the damping ratio of a flexural mods). It has been
assumed, in effect, that an increase of flexmural loss factor means a
corresponding reduction in response. Now the responses of randomly excited
plates, or of plates excited randomly at resonance, depend not only upon the
loss factor but also upon ‘the plate mass and stiffness. Since these latter
quantities vary as the Gaiiping treatment is changed, it is:possibie.for :the
chenging stiffness {say) to reduce ar reinforce the effect of .the .changing
loss factor. The value of the loss factor alone is then no Ionger a -
sufficient critericn by which to judge the treatment effectiveness.

On the basis of the "simplified plate approach® to the responsge
caleulation, it is possible to derive a new set of eriteria for assessing
the effectiveness of the damped plave. These take into account the losz factor
and a non-dimensional “stiffness ratio" end ™mass ratio”. Differert.
criteria are required in relation o different response quantities (plate
surface stress, plate inertia forces, sound transmitted, etc.) and to random
and harmonic excitation. They are developed in Chapter ZII.

These new criteria are used in Chapter IV to compare the effectivéness
of two similar unconstrained layer treatments ox a given plate. (The theory
of the Slamping and stiffress of the tréated piate is also given in this
chapter).

The. probler of -Arsigning a damped sandwich plate is to determine, for
a given weight or stiffces? -of plate, the ideal damping material and the .
optimm plate and dampin layer thicknesses to minimise the response. In. order
to do this, i¥ is necessary in fne first place to know how the plate. stiffness
and. loss factor depend upon the damping layer thickness and dynamic properties.
This: is. investigated in.Chapter V.. Also corsidered is the dependence of the
plate surface bending stresses on these.quentities, when the plate is

Y

%.L

2 7
30 Ns Ve St I ey el D LAY 3 A N

T

N T

Rkl ey
.

T ETT T T T e




‘\ Fora e
RO I PV

RrS

OO v oAt e =+ i e
N A e e — - - - - PN —

deformed in a given mode. Using these plate characteristics in conjunction
with the criteria of Chapter III, the optimm matsrial properides and
thickness are found which minimise the response of a plate of given size.
The responsesof these toptimised’ plates are to be compared with those of
untreated plates. :

Experimental verification is required for the sandwich plate theory
developed. Firstly, a comparison is required betwcen the theoretical values
of plate stiffness and loss facior, and values measured ih harmonic tests.

The measurement of these quantities presents problems which are fully
discussed in Chapter VI and which (it is believed) have been overcome by the
development of suitable apparatus and testing technique. The apparatus has
also been used to measure the damping and stiffpess of some commercial sandwich
samples. It is shown in Chapter VI how these measured results can be used to
compare the effectiveness of each commercial treatment as an aeroplane
structural element.

When the damping of a plate is increasaed to high values (of the
order of 10% of critical, or more), the random inertia forces due to the
plate motion are nec longer very much greater than the random external forece
exciting the plate. There now exists a significant correlation between the
exciting force and the inertia force which is negligible vwhen the damping ic
light. These features muist be included in the analysis of the loads on the
supports of a randemly-vibrating, heavily-damped plate. Chapter VII contains
the analysis for a damped beam, subject to a non-normal loading.

In this random theory, the concept of the complex stiffness is used
sssuming its usual frequency~irdependent character. It is assumed, in effect,
that the complex stiffness et the resonant frequency of the system is applicable
throughout the frequency range, whereas we know that in faet it varies very
considerably. Further, it is assumed that the dampirg aud stiffness measured
under harmonic conditions mey be used to compute the response under random
conditions. The legitimacy of each of these assumptions and the wvalidity
of the random theory have been examined experimenially by exciting the same
sandwich specimens as before with a randomly varying force. This experirment
is described in Chapter VIII,
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Chanter IX

Tha_Damping of Untireated Structureg

II.1 The Sources of the Damping

In this chapter we consider the sources gnd nature of the damping of
untreated struchures. This is done in order to understand the significance
and magnitudes of soms values of damping measured on {ull-scale and model
structures. These values are required in subsequent estimates of the effects
of damping treatments.

The sources of the damping of the structural vibration are:

(a) the internal demping of the structural material
(b} the damping of the structural joints
(c) the acoustic radistion from the vibrating surface.

The internai damping capacity of conventional light alloys used in =2
aeroplane structures is very low. At a cyclic stress amplitude of 2000 1b in
the cyclic energy dissipation is only 0.1% of the elastic energy at the maximum
strain. This increases to about 0.3% at 5000 1t in< . These rates of energy
dissipation cannot contribute more than 45~ x 9.001 or 7 x 0.003 to tke
damping ratio of a structure vibrating with the respective maximum stress
amplitude. Measured values of structural damping are orders of magnitude
greater than these. Material dampirg is therefors insigaificant by comparison
with the other sources, which will now be discussed in greater detail.

I1I.2 The Damping of Structural Joints

Vhen a structure vibrates in the modes described in Chapter I a number
of different and complicated loading actions are imposed upon the riveted
joints which exist between the skin plating and the stringers, between the
skin and the frames. For example, when a stringer-skin combination bends
(as in Figure 3C) the joining rivets undergo a shearing action, arising from
the usual shear siresses in a beam. In azddition, they undergo a tensile-
comoressive action perpendiculer to the plate surface, arisipg from the normal
plete inertia forces. When the same combination twists (as in Figure 3a) a
btending moment or a2 tensile-compressive loading is applied. The loading
actions on the siringer-frame joint are considerably more comovlicated,
consisting of both twisting moments and bending moments, together with
shearing and tensile loads. Energy ic dissipated at the joints under each of
these loading actions.

The mechanism of the dissipation under shear loading is fairly well
understocd and has been described elsewhere by the author (13). The mechanisms
under the other loading actions have not yet been investigated, but the
predominant part must be played by slipping and plesticity of the contacting
surfaces. The non-linearity of these processes mekes it extremely difficult
to study the combined effect of different loading actions applied simultansously.

The damping of shear loaded riveted joints has been investigated
experimentally by the author {13). Tests were carried out on 3 in. diemeter
countersunk rivets joining an 18 S.W.G. joint plate to a 20 S.W.G. Alclad
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stringer (see Figure 12). Flexural vibration of the stringer at about 150 cps i
imposed the oscillating shear load on the joint. Measurements were made of the
energy inpub required to maintain steady vibration of the beam over a wide ot
range of amplitudes. Making due allowance for energy dissipation in various P
"extranequs” sources, the dissipation at the joint was determined. Its
variation with load amplitude is shown by Curve I of Figure 13, where the
actual dissipation per -ycle has been divided by the square of the joint load
amplitude. We shall call.this quantity the "energy dissipation coefficient®.
If the damping mechanism at the joint followed a simple 1inear viscous or
hysteretic law, then the dissipated enerzy would be proportional to the square
of the load. A horizontel straight line would be obtainsd in Figure 13.

It 'is seen, therefore, that the joint damping mechanism does behave in a
sensibly linear mannsr up to @ load amplitude of about one pound ir which load
region relative slipping of the joint plates probatly begins. Thereafter the
dasmping increases more rapidly with load amplitude. Analysis of the rising
part of the curve suggests that th2 cyclic dissipetion is proportional
{approxirately) to the cube of the load amplitude. - The increase may be
attributsd to an increasing anmuler area over which slip is occurrirg.
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In the early part of the experiment difficulty was found in obtaining
a smooth curve over the rising portion, and this was traced to the fzeit that
the dissipation was decreasing quite repidly with time. This time variation
is shown in Figure 14, each section of the curve showing the change of
energy dissipation while the joint loag amplitude was maintained at a constant
value. The experiment was condvcted ir the sequence indicated, different
constant amplitude levels being interspersed with zero-load ®rest~periods™.
The significant featvres of this curve are

{2) the very rapid érop of energy dissipation with time immediately after
the application of « new high load level

(b) the tendency for the dissipation curve to flatten out afier a long
period of steady loading, and then (it is believed) to approach a
constant value.

After this test involving prolonged loading, the dissipation was
again measured over the whole range of loads previously covered. Curve II
of Figure 13 was then obtzined. Comparison with curve I (which is that of the
first test, before prolonged loading) indicates that the effect of prelonged
loading was effectively to shift the whole curve to the right, i.e. to delay
the load at which the slipping process began. The high values of dissiration
at large load amplitudes have bsen reduced, wherszs the low value 2% low
joads has remained almost constant and pow extends to rather higher load
levels.

An explanation for this phenomenon can be found in the imter-surface
detericration which occurs when slip takes place. In the slippirg process,
a welding and tearing action proceeds on the rutbing surfaces. This causes
oxidation of the rubbing surfaces (visible to the naked eye after the s
experiment) and a recuction of the coefficient of friction. At the semwe time,
oxide deposits around the rivet shank increase the degree of fixity of tkre
rivet in its hole, and o increese thte stiffhesz of the joint. These two
effects together result 3n decreased dissipation for a given loasd amplitude.

The energy dissipation due to a slipning process is obviously

13




dependent upon the normal pressurs between the two surfaces. In riveted
joints, this normel pressure is likely to vary considerably from one joint
to another. Considerable variation might be expected, therefors, between

the measured energy dissipation coefficisnts of nominally identical joints.
This has been investigated by testing a number of jointed beams of identical
design to that already considered. Figure 15 shows the variation of the
joint energy dissipation coefficients obteined from each of three beams,
after they had been subjected to prolonged loading. Over the lew load range,
the dissipation coefficients are surprisingly closes in value., The 'critical'
lcads at which the values begin to rise sre of the same crder, end by
shifting any curve either to the left or right it may quite accurately be
superimposed upon snother of the curves. Rewroducibility of: the energy
dissipation of these riveted joints therefore appears to be possitle over the
lower load range, but differences occur in the loads at which the rise begips.

From these results, some general prognostications may be made in
relation to the joint damping of reinforced plate structuress

(a) Harmonic tests at low vibration amplitudes should indicate that the
damping is sensibly linear.

(v) As the vibration acplitude increases each of the many joints involved
will enter the slipping condition, on: after the other. No simple
general rule my be deduced to represent the associated increase of
damping. This must depend on the relative magnitudes of the loads on
the different jeinue, and on the critical slip loads.

(c) At high vibration amplitudes the damping may decrease with time.
This is of serious importasnce when a constant high-level excitation
source is vibrating the structure (e.g. a jet-noise field), as the
vibration amplitude will then increase with time.

(a) At low amplitudes, nominally identical structures should have
closely similar values of damping ratio for a given mode. At high
amplitudes the damping may vary from structure to structure. However,
these variations may not be as great (in proportion) as the differences
between the disspation coefficierts of simila. single joints at high
load levels. .The presence of wany joints in the structure may
effectively 'average-out! the effect of these differences.

Acoustic mmping
II.3 Aconsiic Damping of Single Pan and Local Mode

In order to understand the nature of the acoustic damping of the
local modes of Chapter I, it is convenient first of all to study the
acoustic radiation from a single vibrating plate situated in an otherwise
rigid, infinite, plane baffle. This plate may be regarded as representing
the section of gkin plating bounded by two adjacent stringers and frames.
Consideration of a plane rather than a cylindrical baffle makes little
quantitative difference to the results, so long as the acoustic wavelengths
involved are not much greater than the cylinder diameter. The greater part of
this theory of acoustic damping was formerly presented by the author in
Reference 13.
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Each element, dxdy, of the vibrating surface may be considered as
an g]‘;’e{ental piston vibrating with the local harmonic velocity of the plate,
ue . This piston radiates a pressure wave of wavelength X into
tRe surrounding medium of density p . At a point distant r f@om the
piston the instantaneous pressure is known trom classical acousiic theory
to be

. tat L 27t
dp = ~1pw uoe'“.e‘ A‘dx

d] . soe(2.1)
27

This has components in phase with, and in quadrature with tke piston velocity.
Another piston, at ihe distance r from the first end vibrating in phase
with it, is subjected tc toth of thess components. The existence of the in-
phase component means that the piston has to do work in moving against it,

end this then constitutes the damping "mechanism®. The existence of the
quadrature component siems from the inertia reaction on the piston from the
medium, and this gives rise to the "virtual inertia™ of the medium, as seen by
the vibrating piate.

Extracting the real (in-phase) part of the pressure from Equation 2.1,
and replacing the local piston velocity uge’ by & (it being assumed that
the velocity variation is harmonic), the elemental damping pressure is found
to be

21, sin(27e/Na)
N, 2Zrcfa,

dp = pe w dxdy eeo(2.2)

where c¢ ‘is the speed of sound in the medium. The function

sin(2.r/ X ) + (2/x/X ) , which represents the variatior of pressure
with the distence T ’ bBhaves in a familiar way, being unity whem r =0,
zero when T = )\a/z » and thereafter oscillating and decaying quite rapidly.

The total damping pressure at the second piston due to all the other
elemental pistons is therefore

pe 2n

iy

vhere the integration extends over the whole vibrating surface, r being
the, distence from the second piston to all the Gther elements, This is the
damping pressure on one side of the plate. If the plate can rediate freely
from both sides, the total effective damping pressure will be twice this. In
aeroplane structures, it is probably more accurate <o assume free radiation
from the outside surface only, and the remaining work procéeds on this
assumption.

j sin(2r0/2a) W axdy .ee(2.3)

A 27%/xa

¥ may be written in the form q f(x, y), where 4 is the generslised
velocity of the plate vibrating in the mode f{x, y). Using this in
Equation 2.3, and forming the Rayleigh Dissipation Function, the generalised
damping coefficient correspording t¢ § is found to be

o in (27 c/Aa)
b“ = pe _gxai j] {(x')) ;LS‘;f‘:};a ‘ﬂxd) dx dy a\xd].-.(Z.L)
A .
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Inspection of this double lategral shows that the greater part of its
value must derive from that region of the plate over which the displacement,
f(x, y), has its greatest magnitudes. For most practical sircraft plate
sizes and natural frequencies ths wavelength A will be much greater than
the longest dimension of tils region. From this?it follows that a fair
approximation to the integral (2.4) msy be obtained by putting

sin(2mr/22) |
21/ Aa B ;
Hence )
2
b, % pt2l m £ (xy) axa,] ,
- oL,
or, putting )\a_ = 2refw
2+ “2
- w
b %= £2 ”L*Hx,y)dxdy] I X))

This shows that at low frequencies (i.e. large acoustic wavelengths) the
damping coefficient is proportional to the sguare of the frequency.

At very high frequencies (very smell gcoustic waveleng?hs) classical

acoustic theory shows that the local damping pressure on a- vibrating surface
is pcx the local normal velocity,

i.ee FC ‘F(XQ’) q -
The generalised damping coefficient is then found to be

pe ”“'fz(x‘y) dxdy . eee(2.6)

vwhich is independent of frequency.

From these damping ccefficients we may obtain the damping ratios
corresponding to the naturul frequency of the plate, w n
j.ee {bgo ab ;) + critical damping coefficient. The critical generalised
damping coefficgent. of the plate is given by

2 x natural frequency x generalised mass
2
= 2w, ” p+(xy} dxay
A
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where g is the local plate muss per unit area, and will be taken to hs
constant over the plate. The demping ratios for Jow znd high natural frequencies
ara then .

2
(o g ilhienes)
oc v p { Hﬂ ;z(x.y) dx dg}
for low frequencies, and
g“ = pc/iwurt eeo(2.8)

for high freguencies.

At low frequencies, the damping ratio therefore 3epends on :f:he mode in
which the plate vibrates, but this is not so at high frosuencies.

If the plate is rectangular, simply supported and -sibrates in its
fundamental mode { £(x,y) = sin ® x/a . sin ¥ y/b), the iategrals in
Equation 2.7 may be evaluated.

The natural frequency of the plate in this mode 'is known to be

Wy = 2 (£/B) 0477 (Epg Jpn) (1 + 1/0%)

k]

where E is the p]a‘be Young's Modulus, Pm is the density, ¢t is the
thicknesS and n is the length breadth ratio, a/b . In deriving the constant
factor in this expression, Poisson's Ratio was taken to be 0.3. The damping
ratio of the plate is then found to bs

S, = (0156/eNplpadEnfpa) (ns 10) . .2

For & given plate material and mode of vibration, the acoustic dempirg
ratio is seen to be dependent only upon the air dsnsity, the sound velocity
and the length : breadtb ratio of the plate, provided the plate is not so
long as to invalidate the long-acoustic-wavelength assumption.

If the rectangular plate is fully fixed along all four edges, we

ray obtain an order of magnitude exgression for § ac by assuming
f(x, v} [cos(Zfﬂa)- 11 f'!i:l'::os (%y/b)-ll . This gives

Wy = 2m(t/t?) 1ose (Enfpu)i(h + 2/30 & o)

{The accurate value involves the constant 1.07 instead of 1.058). The
damping ratio is now found to be

5. = (0205/<)p/paMEn/R Y1 v-2a0t s fo) . 2100

ac
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Figure 18 shous Sa,, plotted ggainst n for an aluminium plate
with each of the odge conditions consideved. A laugth : breadth ratio of three
is typical of fuselsge panels; such a panel on ibs own may be expected therefore
to kave an acoustic damping ratio of about 0.004 or 0.005, depending cn ths
edge support. N

When allowance is made for the decay of the pressure amplitude with
increasing distance from an elemental piston {i-e. inclwding the
sin{2%x/ A\ )/(2%x/ A ) term correctly) the integral of Equation 2.4 can only
be evaluated numeri + The acoustic damping pressure over the panel must
then bz less then that assumed in the above theory, and the damping ratios wiil
therefore be less. This effect will increase with increasing length of plate,
i.ee with n « Such a numerical evaluation has been carried tut by
Mongiarotty (14) under the author!s direction. For the special case of an
aluminium plate, 5 in. wide and 0.048 in. thick, the damping ratios are
presented as points on Figure 16, showing the reductiondue to the decaying
{or™on-uniforn®) pressun:.

He can now consider gualitatively the acoustic damping of a mode
waich inwoives two or wore adjacent panels, separated by a flexurally stiff
longitudinal strirger. Firstly , suppose that the panels are vibrating
in phaee with obe another in 'fixed-sided' modes (similar to the type € modes
of Figure 3). There will. be a damping pressure on each psnel due to the
adjacent panels. If the panel width is small compared with the sound
wavelength, and there are two such adjacent panels; the damping pressure will
be neaxiy twlcv that of a cisgle panel. Likewise, the damping pressure on
three nzrroy, adjacent panels will be nearly three times that of the single
panel, The acoustic damping ratio of this mode is therefore likely to be of
the ordsr of 0.015.

If the panels are separated by a torsionslly flexible sitringer, and
eact wihrates in a 'simply-supported! wode in anti-phase with its neighbouring
panels, "the damping pressure from one panel will tend to cancel out the
pressure ca its neighbouwr, and vice-versa. The acoustic damping of such
modes is likely to be negligibly small. Local modes of type A (Figure 3)
will theyefore have negligible accustic damping.

If there is a row of several adjacent similar fixed-sided panels, a
rough estinete of the acoustic demping may be made assuming the existence of
an infinite line of penels. Suppose the radieted sound wavelength is greater
than several panel widihs. The demping pressure at the centre of the rth
panel due %o vibration of the sth panel in the mode q_f_(x, y} is given
aporoximately by

2x sin2re(e.-%) /Ay £ (x.y) dx dy
F° ¥ orntn-aira ”A *

(fron Eguation 2.3), where r_- r_ is the distances bebween tiecentres of
pasels x* and s . If all the pagels vibrete in the szme mode and with ths
szue amplitude, the total pressure at the centre of the rth pansl will be
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The swrmmation extends over all the panels.

Ths damping coefficient will now be ealculated assuming that the
pressure at all points on any panel is oqual to that at the panel centre.
We first find an approximate value for vhe infinite su3, using the integral

&..
J snx Ax = -11
o X 2
If the penel width is b , this gives
o= +® .
Z sin 2 (f-%)/ha . Ay
2“(1}‘ s)/)\a' ) 'Zb

S§3-&

and the damping prassure becomes

4 e
l\a ﬂ -

The contribution from eny panel to the gencralised damping coefficient
of the whole system is then

which is Xa/b times the damping coefficient of a single isolated panel.

The damping ratio of the whole system will then be approximately A /b
times that of the single panel. a

For the Caravelle fuselsge, the frequency of the type C modes was
approximately 1000 cps (A, =13 in.), the panel width was about 3} in.
and the length : breadth rétio was 2 . The acoustic danmping ratio would
therefore be of the order of (13%/3.5)x 0.004 =0.015, if the stringers did
not bend or contritute appreciatly to the potentiel energy of the vibration.

That they do in fact contribute inevitably means that the value of §__
celeulated above is an over-estimate. ac

If a second long row of panéls exists alongside the first, cancellation
of the damping must occur if they vibrats in ecounter-phase with the first.
Reinforcer:nt of the damping must occur if they vibrate in phase with the
first. The Caravelle tests gave no indication of any phase-relationsaips
(correlation) across frames, and it was concluded hat each row of panels
(between frames) was vibrating independenily. No reinforcement or
cancellation would then ocsur,
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I1./, The Dampinz of Model Structures

This section revisws some values of the damping of model structures
peasured by the suthor and others. Ths modes reprecented small sections of
8, fuselage structure and cor:isted of stringers, frames and skin plating of
normzl dimepsions, riveted togsther with standerd sized rivets and by standard

tecbniques.

In the first Snvestigation (by the suthor, with Froud (13)) a top-hat
section stringer was tested which had a navrrew 18 S.H.G. plate rivetzd to
its flanges (see Figure 17). The rivets were identical to those of para II.2.
The stringer was excited in ite fundamental bending mode, subjecting “he
rivets to shear loads together with small normal loads. Values of the
"gquivalent linesr demping ratio® (as defined in refersnce 15) wers measuved
over a rangs of beam amplitudes. A% the liguest amplitude, when ths greatast
rivet shear load wes sbout 7 1b., the damping rmzilo of the whcle beam was
only 0.00025. This is about twice that expected from the msterial demping.
The contribution of the rivet demping to this total was calculated using the
method proposed by the author (16), incorporating the rivet dsmping properties
measured on single joiuts. The rivev contribtution came to only 2% of the measured
total! A greater ccatribution would be made if the beam was shorter or if oniy
one line of riveis attached the plate to the stringer. EBven undsr these
conditions, the contribution of the stringer-skin rivets o the total damping
ratic will still be a very small proportion of the total damping. Damping
ratios of the order of 00,004 and more have been msasured for *local® modes
of larger models (see later paragraphs). We may reasonmably conclude, there-
fore, that the shearing of the st{ringer-skin rivets dves not contribute
appreciably to the damping of thess modes.

As one part of another project,l{ercer(l'l) under the suthor's
direction, measured the damping of some local modes of a plate which was
reinforced by two frames along its long edges (see Figure 18) and by
seven equi-speced stringers across its width. FEach panel so formed was
6.75 in. wide, 13.5 3u. long and 0.028 in, thick. XAttachmert rivets were =t
1.5 in. pitche. The strecture was excited harmorically, using light exciter
coils at each panel centre. Modes of Type & (stringer torsion modes of
Figure 3) had damping ratios of about 0.006 to 0.007 . These were the same
when the model wes in free air or in vacuo. i.e. acoustic damping was
negligible. Yodes of Type C (stringer bending modes of Figure 3) had
damping ratios of 0.0l to 0.011, and these were slightly smallier in vacuo
then in free air. Asoustic damping would not be large for this model as

it was "unbaffled®, and pressure cancellation could occur from ons side of .
the model to the othsr. I} is noteworthy that the stringer bending mode had
a larger damping ratio than the torsion mode.

L very significant feature of this experiment was that the frequency-
response curve from ths strain at a panel centre showed groups of peaks
cenired on the natural frequencies of the Type A and Type C modes. Some of
these peaks must correspond with medes in the 'Intermediate' class, mentioged
in Chapter I, para 1.2, but more peaks existed than could be accounted for
in this wey. The dominant Type & mode for one specimen oceurred at a
frequency of i48 cps, but two strong peaks also occurred at 144 eps and
142 cps. A cursory exanination indicated that the modes at these
frequencies were similar in form to the Type & mode. (They cannot, of courss,
be 'too! similar without vieciating the orthogonslity conditiom). The
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signifance of this feature will appear in para II.5.

Ford and Clarkson (18) have siudied the local modes of a curved
reinforced structure measuring & ft. by 4 ft. The stringer and frame spacings
were 4.5 in. and 9 in. respectively. The skin thickness was 0.028 in, and the
rivet pitch was 1 in. The structure was-excited harmonically using plane
sound waves from a loudspesker. Strain gauges measured the strain response
at the centres of ten adjacent panels between the middle two frames. In the
course of the inve t®gation, the following ‘damping ratios were measured from
tvector plots! of the response:

}
Frequency Darping
CoPeSe Mode Ratio
(z 310 Stringer Torsion, Fig. 3a 0.0046
(i1) 31 Every fourth stringer bending, Others
bending and twisting. Fig. 19a .0034
(314) 354 Every third stringer bending, Others
twisting and bending. Fig. 19b 0.0036
(iv) 384 Every other stringer bending, Others
twisting. Fig. 19¢ 0.005
(v) 396 Similar to (iv) Fig. 194 0.C047
(vi) 600 Stringer bending. Fig. 3¢ 0.008

A full discussion of these results is not possible since very little is
really kmown about the modes of vibration. The modes drawn in Figure 19 were
deduced entirely from the mezsured bending strains at panel centres, so the
ratios of stringer displacements to panel cepire displacements were not known.
Purther, the extent to which adjacent rows of vanels were participating

: (a factor on which the acoustic qamping depemds) was also not knewn. .It may
te observed, however; that the dewping of the stringer bending mode is agein
R -arpreciably greater than that of the 2tringer torsiom mode. Also, the demping
ratios of modes (ii), (iii), {3v) and (vi) increase progressively as more
stringers appear to urdergo pure bending loads. This increase could ts ;
attributed to a progressive iacrease in one {cr more) particular loading
action, e.g. the shear load on the stringer-frame joint, or the normal load
on the stringer-skian joint. It is unlikely %o be attributable to increasing
shear loads on the stringer-skin joints, as this loading action has been shown
to make an insignificant contribution to the damping. Inspection of the modes
of displacersnt suggests that acoustic damping should not be significant
except in the stringer bending mode at 600 cps. In the absence of informaticn
regarding the motion of adjacent rows of panels, no furthsr comrcut may be
made on this point.
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11.5 The Damping of Actual Aeropiane Structures

The only damping data rslating to actual structures are three values
obtained Ly Clarkson and Ford in their Caravelle and Comet investigations {8).
The measurements were made from the random signals from strain gauges on
various panel centres as the structure vibrated in a jetwnoise fieid.

The mathod of measurement depends on the following property of the
random response of a single degree of fresdom system. If the random exciting
force has a flat spectrum in the neighbourhood of the system natural frequency,
the auto-correlation function of the response forms a demped cosine curve when
plotted against the time delay. The rate of decay of this curve, with respect
to time delsy, is the same as that of the free damped vibration of the system
with respect to real time,

Accordingly, the random sirain gauge signels were filtered through a
% octave band filter centred on the natural frequency of the stringer torsion
wode of the structure. This filtering was intended to isolate the response
of one mcde only. The filtered signal * was then autodcorrelated and the
decay of the auto-correlation curve was measured. The damping ratios derived
are shown balows

: Location Frequency | Damping
of Panel Panel Size CePeS. Ratio
% Caravelle Rgar 7 in. betuween frames 600 0.016
§ Fuselage 3.5 in. between stringers

i Caravelle 7 in. stringer to edge 309 0.020
: Blevator 5.6 in. between ribs

’ Comet Tailplane | 11 in. between ribs 400 0.014
} 6 'in. between stringers

These values are considerably greater than anything measured on
_laboratory specimans. Two reasons may be offered for this:

1) Shielded leads to the strain gauges were taped or glued to the panels
and stringers concerned. This could increase the damping very
considerably.

(i1) There is good reason to believe that the filtering did not, in fact,
isolate a single mode, but that more thsn one structural rescnance
was contained within the frequency band of the filter. Mercer, it
will be recalled, found a group of rescnant frequencies centred on
the stringer torsion frequency, and this could be trus of the actual
seropiane structures. The auto-correlstion technique used to measure
the damping is unable tc differentiate between the damping of a single
mode and the total damping of twe {or more) 'closs’! modes contained
within the filter bandwidth. e.g. the damping ratio 0.016 could imply
the existence of two modes, equally excited, with damping ratios of ]
approxdmately 0.008. S
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The resolving power of the technique therefore needs to be miich
improved before the results of such damping measurements can be treated with
much confidence. Care must also be taken to ensure that the measuring
eguipment does not add to the structural damping.

I1.6 Concluding Remsrks on the Damping of Untregted Structureg

Bxperiments cn single joints indicate tkat the damping of nominally
identical structures at low amplitude levels should be sensibly linear and
substantially the same from one structure to another. A% high amplitudes,
non-linearity and time dependence of the damping is to be expected.

Acoustic radiation appears to be capable of developing damping ratios
of 0.016 or more for stringer bending modes, but such highly damped modes have
not yet been isolated in model work. The magnitude of the acoustic damping
depends critically upon the phase-relationship between the motion of adjeceab
panels or rouws of panels. Reinforcement or cancellation of the acoustic
damping may occur, depending on whether adjacent panels (or rows) are in-phase
or out-of-phase. The acoustic dawping of stringer torsion modes should be
negligible.

Measured values of the damping of model strunitures have not been
obtained in systematic damping studies, so few general conclusions are
warranted. It appeaxrs, however, from the work of both Mercer end Ford that
stringer bending modes have higher damping than stringer torsion modes. The
principal source of the tending mode damping is thought to be in the stringer-
frame joint. Mercer's small model with large panels had damping ratios of
0.011 and 0.006 respectively for the two modes, wiereas Ford's large model
with small panels had damping ratios of 0.008 and 0.005.

Damping ratios measured on actiial aeroplane structures were in the
region of 0.014 to 0.020. Confidence cannot yet be placed in these results,
owing to deficiencies in the resolving powsr of the msasuring techunique and
also to the possible presence of extraneous damping sources in the expariments.

In subsequent calculations in which are required scme values of the
damping of untreated structures, we shall therefore take 0,005 as representing
the lowest values and 0.0125 for the highest values. There is obviously
g considerable degree of arbitrariness about the latter figure.
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Chapter IIT
Criteria for Comparing the Effectivencgs of Damping Treatments

I1I.1 The Need for Criterdis

It has been common practice for many years to specify the effectiveness
of a damping treatment by the amount by which it increases the loss factor of
the system to which it is added. This practice s‘emmed from early unconstrained
layer treatments being soft and adding little to the stiffness of the steel
plates to which they were applied. The treatment giving the greatest loss
factor increase would also give the zreatest attenuation of response, and the
efficiency of the treatment could be judged by the "loss factor per given weight
of treatment”. Now that damping treatments are being used on lignt, z2luminium
structures, a reconsideration of this criterion is necessary, since the
incorporation of modern treatments changes the system stiffness quite
considerably.

Acoustically excited vibration, the associated stresses and the transmitted
noise, together with numerous other response quantities depend in different ways
upon the damping, stiffness end mass ¢f the system. Some of the quantities
increase with increasing stiffness, whereas others decrease. Since the
effectiveness of a damping treatment must ultimately ba judged by its effect
upon the respohse, it is evident that the loss factor increment alone is an
insufficient criterion by which to judge. Furthermore, different.-criteris
are required when considering different response quantities.

In this chapter criteria are derived which provide a basis for comparing
the effects of different treatmenis on a number of response quantities.
Expressions are first derived (or quoted) for various response guantities
of simple linear systems in terms of the mass, stiffness and damping of the
gystems. Both-random and harmonic excitations are considered. From these
expressions the "criteria” are deduced. For the systems under harmonic
exccitation the derived expressions relate to resonant conditions, and a
comparison is sought between their msgnitudes before and after the damping
treatment is added.

It must be recognised that, in general, the damping treatment will
change the resonant frequency of the system. If the fiequency of the hermonic
exciting force does not chenge, then a system initially et resonance will
be "de-tuned™ and the resultant attenuation of the response will nct necessarily
be due to the damping of the treatment. However, in most gystems to which
demping treatments are likely to be applled the frequency of excitation changes
with changes of operating conditions, and there i3 bound to be some operating
condition, at which resonance of the irsated system will occur. The response
at this new condition should therefors be compared with the response at the
untreated resonant condition, under the assumption thet the amplitude of the
exciting force is the same at both frequenciss. This is, in effect, what is
done in section III.2 of this chapter, where consideration is given to the
amplitudes of harmonic displacement, wvelocity acceleraticn, inertia force and
the surface bending stresses of a vibrating. In all casses, the response in
one mode of vibration only is considered, it being furthar assumed that the
damping trsatment does not change the mode,

Section III.3 considers damping treatments i» relation to harmonie
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sound transmission through simple structvres. Once ageih, resonant conditions
are assumed to pertain both before ap? after the treatment is applied, it
being assumed that changing the operating conditions can always restore the
system to a rssonant state. Coincidence transmission through plates of
infinite length is also considered, the change in the operating conditious
required to restore coincidence after the treatment has been added being
explained in the text.

In section IIl.4 random excitation of the system is considered and
further criteria relating to displacement, acceleration, inertia force snd
bending stress are investigated. Here there is no need to consider changing
operating conditions when the treatment is added to the system. The only
assumption that is necessary is that the power spectrzl densiiy of the exxsting
force is the same at the resonant frequencies of boti the unbtreated and -
treated gystems, and; furthermore, does not vary apmreciably in the region
of the resonant frequencies. Finally, this section deals with the effect
of a damping treatment upon the sound pressure transmitted through two simple
plate structures subjected to random pressure fluctuations.

I1I.2 Criteria Applicable 1c Harmonic Vibrationg

111.2.1 Characterigtiecs of the Mechanicgl Svstem

. Here we consider the effect of a damping treatment on the response of
a system vibrating ir a single natural mode of vibration under the action of
a harmonic exciting force. Before the damping treatment is added, the
generalised mass and stiffness of the system are M and K respectively.
Suppose also that there exists a viscous damping mechanism,; giving a 1wt
generdised damping coefficient C . Denoting the exclting force by P.e
tl):e equation of motion of the system (in terms of the generalised displacement,
q) is

M + C§ « Kg = Pe™* e (3.3)

The damping Hreatment increases the mass and stiffness coefficients to M8
and KR(1 + iv) respectively. If the vibrating system is a uniform flat
plate aitached to a rigid structure, and the daemping treatment iz in the Torm
of a uniform layer over the plete, then 9 is the factor by which the
treatment increases the mass per unit srea, and W is the factor by which it
inereezes the flexural stiffness of the plate. The equation of motion after
treatment is therefore

1wt

Bii + Cq + KR(I«'r;Y) = Pe cee{2.2)
I1T.2.2 The Effect of the Treatment on the Resonant Displesesment Amplitude
Provided the initial damping (represenied by C) is.smell compared

with the added dampirg, the maximum amplitude of aq (denoted bty g ecsurs
at the freguency

v f
w, = (Kn/Me)” ver(33)
E’,M‘ 4P /!Cwn + KR?) = 'P/KR\? eee(3.4)
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Now the maximum displacement of the system in its untreated condition can be
expressed in the form P/Kwj where vy is twice the damping ratio (G/Cyryt)
corresponding to the initial damping. The effect of the damping treatment

has therefore been to divide the initisl resonant displacement amplitude by

Rq/ ?; - The effectiveness, and hence the efficiency, of & treatmsni used to
attenvate vibration displacsments is evidently measured by the wvalve of the
product Ry « In genersl, for unconstrained layers, this product increases
monotonically with the quantity of treatment added, whereas ¥ approaches an
asymptotic value. KR+ is of course a true measure of the damping added

to the system, whereas ¥ is a function of the damping and stiffness. The
eriterion by which different treatments should be judged when used tr attenuate
harmonic vibration displacements is therefore the value of Ry per _.ven weight
of treatment. Similarly, when the effect of increasing the amount of a given
treatment is considered, the values of Ry for the different amounts should
be compared. The valus of w itself is an insufficient criterion.

I11.2.3 The Effect of the Treatment on the Surface Bending Stresses of a
Vibrating Plate

The effect of small thicknesses of unconstrainad layer treatments on
plate bending stresses is virtually the same as the effect on the displacement
amplitude. However, the surface stress is proportional to the product of the
amplitude of curvature and the distance between the surface and the effective
neutral surface of the section, ard with large thicknesses this distance wmay
be up to five times that for the untreated plate. Suppose this distance before
treatment iz y , and after treatment is - £ y. Since the amplitude of the
oscillating. curvature is proportional to the displacement amplitude, the
surface stress in the untreated state is proportional to..yP/Kv 4 » and In
the treated state to olyP/KR9. .The final stress is therefore equal to the

initial stress divided by Rve /Yy «

Vith sandwich piztes, the concept of neutral surfaces no longer holds.
Suppose now that the surface stress at a point on the untreated plate is T
when deforred in a given mode of normal displacement by a given amount. When
the sandwich plate is deformed-in the same way and by the same amount, the
surface stress will be o o, say. (g may have values between
4 and 3) , Under the harfonie excitation previously issumsd, the ratio of

the oscillating stresses is evidently 1 : \?i/ Ry c(s .

In each case, the factus qu‘l remresents the effect of the dampi
treatment, the larger it is the smaller being the bending stress. Kl
is then the criterion by which different treatments should be judged when
condidering their effects upon surface bending stresses due %o harmonic
vibration et resonance. We shall call o the "siress ratio”. For plates
ieated with unconstrained layers the above definitions turn out tc be the same,
so the suffix 's' is not, in fact, required.

111.2.4 The Effect on the Regonant Yeloeity Amplitude

The amplitude of the generalised velocity of the system is given by wgq
where q 1s the displacement amplitude ai the frequency wz 3z This may easily
be shown 4o bave a maxirum value at the frequsancy wn(l #9<)* vhen the
assump’ . is made that the viscous demping is small compared with the
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hysteretic damping. At this frequency the velocity amplitude is given by

3

131 = P/REMER S [20apitay) | e (3:5)

vwhich, for small velues of ' reduces to

) £ % % %
lq»-L = P/K'il"i Kzezvz. coo{2.6)

The maxirum attenuat%og of harmenic veldeity amplitude is obviously obtained
when the product R 29 ? .is as large as possible. The mass of the treatment
(inclvded in the factor 8) is now important, but when compariag the affective-
ness of equzl weights of different ‘reatments the significant parameter is the
product #®%29. The eriterion by which different treatments should be Judged
when used to attenuate vibration velocity amplitudes ig therefore the value

of R ’g‘vz per given weight of treatment. When judging the effect of different
quantities of the same treatment the complete expréssion RTO2 7 must be
used as the eriterion.

I1T.2.5 The Effect on the Resonant Acceleration and Inertia Force Arivlitudes

given by wzﬁ - This hes a maximum value at the frequency w (1 +
making the same assumption as before with regard to the zragnituge of the
viscous damping., At this freguency the acceleration amplitude iz given by

The generalisé& acceleration amplitude under haimonic excitatioﬁ) }_s
\? <

oe -—!,,
tg] = P/Megli+y)® e e (3.7)
Max
reducing to
1§y = TF/mey .o (3.8)
maxg

‘for small values of % - This is minimised by making © as lerge as possibla.
Considering equal weights of different treatients, the signficant parameter

is evidently ) itself. Its value is therefore a sufficient criterion by
which to judge the efficiency of a given quantity of treatment used %o attenuzte
acceleration amplitudes.

The inertia force amplitude is directiy proportional to the oroduct of
the generalised mass and the generalised acceleration amplitude. Its maximum
value therefore occurs at the same frequency as the maximum asceleration, znd
is proportional to

2 ~l
Platieqghi® e (3.9)
reducing to P/\'z for small N - Again; the value of ) fer a given weight
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of treatment is a sufficient criterion by which to judge the efficiency when
attenuating inertia force amplitudes.

It should be noted that as ¥ becomes large, the term w(1 + 12)'%
approaches unity. Any attempt to increase the value of v provided by s given
treatment when ¥ 1is atrcady large, is not then accompenied by a worth-whils
reduction of acceleration or inertia force amplitude. It is probable, however,
that when ¥ is large enough for this effect to be important, the problems
arising from the accelerations snd inertia forces will have already been solved.
The eriteria developed in the whole of this section are sumrarised in table 1.

III.3 Criteria Aoplicable to Harmonic Sound Transmigsion through Simple Structureg

As the addition of damping to a system has little effect upon forced
vibrations apart from those cccurring at resonance, this section will deal
only with sound transmitted under structural resonant conditions and "coincidence®
conditions. Two special cases only will be considered but these will serve
to show the different ways in which the mass, stiffness and damping properties
of the treatment affect the transmitted sound pressure. This implies, of
course, that different efficiency criteria are required for judging the merits
of different treatments, depending on the nature of the transmission.

Two very simple transmission mechanisms wiil be considered:

; (1) The sound transmitted through a finite fiexible plate set in an
otherwise rigid and infinite wall {or baffle). An incident <€ield cof
plane harmonic sound waves impinges on one side of the plate causing

‘ resopance in one of its natural modes. The sound wavelength is

i assumed to be large compared with the plate dimensions.

(2) The sound transmitted through an infinite flexible plate when an
infinite field ¢’ plans harmonic waves impinges on one side, causing
Tcoincidence™ trensmission to exist.

I1I.3.1 The Sound Transmitied Through s Finite Plate ]

As stated above, the plate is considered to be mounted in an infinite
‘ rigid wall., Firstly, it is assumed that free field conditions exist on both
{ sides of the wall, and on one side the incident field exerts an oscillating
pressure on the plate. It is further assumed that the waveiength of the sound
| radiated by the motion of the plete is large ccmpared with the plate dimensions.
! (This i;-. inevitable if the incident sound wavelength is large, as elready
! assumed) .

Now the sound pressure at any distance from the plate is found by -
integrating Equation 2.1 (Chapter II)over the whole plate surface. If
both r .and A_ are large compared with the plate dimonsions, the
integration yielgs

. ot 12we /)
P(r,‘t‘.) = -1 pw iqi e’ . e' Pa II
| 2ry A

+ (x,)) dx dy

‘ where q 1is the amplitude of the generalised veloeity corresponding to the
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mode £(x,y) . The sound pressure emplitude is therefore proportional to
widy 5 i.e. to the amplitude of the generalised acceleration . We may
therefore use the result of the last section to obtain the priterion relating
to- tesonant harmonic sound pressure transmitted through 2 simple plate.
The sound transmitted is evidently proportional to

?/Me(uvffi.\? ,

in which P 1is now to be interpreted as the generalised force corresponding
to the incident sound pressure, and M6 as ths generalised mass of the plate
corresponding to the given mode. It ie implicit that the acoustic radiation
damping is small compared with the treatment damping, an assumption which

is justifiable for any conceivable plate. For a given weight of damping .,
treatment, the trensmitted oressure is inversely proportional to Vz(l«avf‘) <
which expregsion is the criterion required. :

Now if one side of the plate is enclosed by a reverberant cavity, the
natural modes of the plate will couple with standing waves within the cavity.
There are, in fact, en infinite number of standing waves with which any one plate
mode may couple, implying that there is an infinite set of natural frequencies
at which the mode may resonante. (See, for example, refs. 19, 20). It is
required to establish, therefore, the relationship between the resonant pressure )
amplitude within the cavity, corresponding to any one of the standing wave v
systems, and the generalised plate characteristics (including ©, R and vy ).
A preliminary investigation has bsen carried out by the author (the work to be
published later) considering a rectangular cavity, one wali of whick consists
of the.flexible plate assuwed to have simply supvorted edges. The other
wells were considered to be rigid. ThHe results of the anslysis suggest the
following effects of increasing 9 , R and v

The sound pressure at each of the standing wave rescnances is inversely
proportional to B . The effect of increasing €@ and R may be combined ty
considering the effect they have on the uncoupled nmatural fraguency of the
plate, and then examining the effect of change of frequency. If the coupled
standing wave - plate natural frequency is much less than that of the uncoupled
plate, then an increase of tne plate frequency tends to incrcase the resonant
sound pressure. If, on the other hand, the coupled frequency is considerably
greater than the plate frequency, then incressing the plate frequency decreases
the resonant sound pressure. When the coupled frequency is close to the plate
frequency, no such generalisation may be made and each case must be consideréd
on its own merits.

IIT.3.2 The Sound Transmitted by Coincidence through Infinite Plate

Wa now consider the effect of a damping treatment on the sound pressure
transmitted through an infinite plate (or beam), on one side of which is an
incident sound field of plancharmonic waves whose wave-fronts are inclined
at an angle 4 to the plate surface. Before the treatment is added,
coincidence transmisgion exists, the trace velocity of the incidend, field
coinciding exacily with the phase velocity of the flexural wave in the
plate excited by the incident field. The transmitied .pressure is then equal
to tha incident sound pressur , The massand stiffness of the damping
treatment changes the phase velocity of the f{lexural wave, and if ine -
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incident sound field remains the same, a de-tuning effect will reduce the
transmitted- pressure. The reduction due to the de~tuning msy be considerably
greatar than that due to the additional damping. If, however, the inclinaticn
¢r the frequency of the incident field is changed (the incident pressure
remaining constant) and coincldence coaditions are restored, then a measure

of the effectiveness of the damping treatment may be found by comparing the
transmitted sound prasssure under these new coincidence conditions with ths
pressure under the initial conditions.

In the subsequent apalysis, a undt width of the treated plate need
only be considered. This has a complex flexiral stiffness RD(1 + i9p) and
a fass per unit length p©@ . The imaginary part of the complex stiffness
represenis the internal demping due to the demping treatment. D and m are
the flexursl stiffness and mass per unit area bafore the treatment is added.

R  and O are the stiffness and mags factors represanting the effect of the
treatment.

Let the incident pressure amplitude be p; . Dus to reflection of the
incident wave and consequent pressure doubling, the ineident pressure acting
on the plate is given by

Qp; exp L (w‘t S 27tx/>\¢) ...(37.10)

(See Figure 20 for explapation of undefined symbols). If it is assumed
already that the flexural wave in the plate is of harmonic form, and of
wavelength A, , it may be shown that the transmitted (or re-radiated)
pressure, p, -, acting on the plate surface is

pe secf. Sw/ot eee{2.11)

wizrz ¥ is the local transgverse hending displacement of the plate.

tnis re-radiation occurs from each side of the plate, the net re-radiation
pressure acting on the plate is 2pe sec ?.awﬁt.

The equation for the forced motiop of the plate mey now be written

RD {1 *;7) 34w!3x" + }-&9 azwla’&% =

. eee{3.12
~2p; exp i {wt + 20k [A) ~ 2 Ow/3t pc.sac? . (3.12)

Derivative: of w with ruspect to y are gero, since the sound field
consists of infinite plane waves. Putting w =w exp i(wt + 27x/ Ay +g),
eguating the real and imaginary parts on both sides and eliminating €~

it is found that

’o
% = 2p[{apianpr)t- pot Vi frp (21 acdy #2pe seoib}z]i.(z.n)

For small § , it is sufficiently accurate to consider coincidence transmissica
occurring at the freguency @ o ; given by

RD (zwlxt)4- }»ewﬁ =0. eee(3.14)

B

et w5 s memm e e et = s 7w aammr s mr w8 aan U A




ORI St i | G

Vom e e

g Rk -

PRI NLS YR

PRI ——

-

o gy

e I O T T

— s e s vt o = e RCMIRRAAS 2 SR

The local plate velocity and the incident sound pressure are then exactly
in phasc and the trensmitted sound pressure is close to its maximum value,
vhich actually ccecurs at a slightly greater frequency.

At the frequency < _, the transmitied sound pressure amplitude

is coc\'.' p c.cos g . Substitution for # and rearrangement yields

P, = P, [ i + RD (21‘-1)‘*,)4\?] ere{3.15)
2 pc W, sec @ )
Now the trace wavelength A t is related to w, by
>'t. ss'n# = )\ = Q‘H‘c/wc
and also by ves(3.16)

w:_ - ( RD//&Q)(2T"/>«t )4 ($rom 3.14)'

Using these relationships, A, and W,y or Aﬁ and £ may be
eliminated from equation 3.15. We then have

2 2 - -
B, = ﬁ[l + g_;f,—:i% 1 (re)%(KD) "] = P [%g...(357)

or

i3
2

. , -t
P = P‘l‘ + 2—‘?‘(’{1 - (Cz/wc)(}»‘a/kb)i) PG?] = P{{kw...(B.IS)

Equation 3.17 may be vsed to indicate the effect of ¥ , & and R on

the transmitted pressure when the inclination of the incident fisld is kept
constant while the frequency is varied to restore coincidence. Equation 3.18
pay be used to irdicate the effect when the frequency is kept constant end the
inciination is changed. It is implied here that coincidence transmission

may indeed be reciored. This may not alwayi be pessible, as suggested, for
examples, by the term {1 - (c2/w,) (po/R D)¥}"% in equation 3.18 . If

C/K is suck as to make this term vanish, or to be imaginary, coineidence
transmission cannot occur at the particular frequency

L d

c

Now when % is zero (no internal damping), pt =p; . The pressure
smplitude transmitted under damped corditiors is therefere 1/k; or ko,
times that transmitted under undamped conditions. The signficafit factors

invelved in k 4 and k, which must be made as great as possible in order
to produce the”greatest attenuation of pressure are:

3 X
2 .2
‘] 9 R 030(3019)
. 2 % PaY:
and | 9{ b~ {%fwe)(p/D) (8/R) ] .++13.20)
It is evident that 1 should be as greal as possible for the greatest ’
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attenuation. Furthermore, exprassion 3.19 indicates that it is desirable
for KR to be as small as possible. In this case, an increase of stiffness
counteractc, in soma measurs, “he effect of the increased damping.

It may be noted that the term ( F/D)%(g/ 14 )% in expression 3.20 is
inversely proportional io the resonant frequency of & treated finite plate,
when vibrating in a flexural mode of wavelengih A, « The value of
expregssion 3.20 is reduced when this frequensy decreases, indicating therefere
that it is undesirable for the damping treatment %o decrease the resonant
frequency of the system if the transmitted sound pressure vnder constant
frequency conditions is to be mininised. If two different damping treatments
provide equal loss factors, ¢ , the most effective treatment will be that
giving the greatest frequency increass {or smallest decrease).

111.4 Criteria Anplicable to Rendom Vibrationsg
II¥.4.1 Random Mechanical Response Juantities

Once again, the response of a single degrse of freedom system only
will be considered. The system is excitzd by a force which varies randomly
with tire, and it is assumed that the power specirum of the corresponding
generalised force does nod vary appreciably in the region of the natural
frequency of the systems The equation of motion of the system, in terms
of the generalised displacement, q , is

Meq + Ci + Krli+igig = Pli) ee(3.21)

where P?(t) represents tle random exciting force. If the power spectral
density o6f P(%) is denoted by §_(W) , then it is well known that the
power speciral lensity of the gene?alised displacement, & q(w ), is given

by
§$(w) = §P(w)/izl2 eee{3.22)

121° is the square of the medulus of ths mechanicsl impedasce,

2 2
i.e. (Kr —«*M9)" 4 (wC ¢ Kavz) ees{3.23)
The mean squere welae of the gensralised displaczement, (*qz) is giver
00
by j £q(w) dw . Under the restriction guoted above the variation

e of §?(U), and sssuming small totai damping, the integral
vields

<Ci:z> = %P(wn)é‘lt/Q)/KR (C + Ksz/wn} N eee(3.24)

i

wvhare wz KR l M 9 000(3025)
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We assums now that the inibial vigcous damping is very much smaller than
the added hysteretic damping, end also allow that v may be large (i.e. of the
order of 1}. Ths root mean square dispiacement then becomes

.!. 3 3
g, = [& )(rrlz)] [M‘*K 6* ey Bl ee(3.262)
ms3
where F(vl) = f2('+m) ]2 oo (3.26b)
J 1 + q

L L
Thus the r.m.s. displacemen: is lanversely proportionsl to R"' &* v{' Fd (ﬂ)
and the correSpo-xding efficiency criterion for a damping treatment is the
value of R/ F, ¢ per given weight of treatment. It follows, by direct
comparison wi;.% para I“’I 2.3 that the cntenon relatmg to the surface

bending stress of a treated plate is R Q‘ F(V()«’f per given weight of
treatrent.

(When is very small, Fd(w ) is very nearly equal to one, and
expreesion 3.26s reduces to tha+ norma.lly quoted fo. the r.m.s. displacement
of a lightly damped randomly-vibrating system of one degree of freedem.
When < is large, Fd( 1 ) may be regarded as a !'large damping correction
factor' converting the expression for the r.m.s. displacement of the lizhtly
damped system to that of the heavily-damped system. It has the value of
1.1, when ¥ =1, and 1.04 vhen g = 0.3).

Under the same assumptions as above, the root mean square value of the
generalised random velocity is given by

i kX -3
i = [Bedmfddddna] o
f'ms
where F,iq) = { 2 ]:; .- (3.275)

The r.m.s. veiocity is therefore inversely proportional to R*%ﬁ Y M),

and the correspondinz efficiency criterion is the value of % v‘) per
given weight of treatment,

Consider now the mean square vaiue of the random generalised
a.,celera.tion. The power spectiral density of the acceleration is given by
w4 timsz the puwer spectral density of the generalised displacement.
Integrating this from w =0 tow = o, and making the same restrictions
as above upon the variation of the power spectrum in the region of the

natural frequency, the mean sguare valus of the generalised acceleration
is fourd to be

..2\ ‘? ’% % %3 - 2 2 .2
(3% = &, W) iz [M‘K B8R v F(\’()] + (PN M S, . . (3.282)

&
é

p

s
}

2 -‘i 2-! 2 ese(3.28b)
["?\"i-'lz] { Hq] ) '
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The first of the two components of this expression miy be sald to derive from
the resonant response of the system, and 1s thersfore dependent upon the
damping. The second compdasnt is associated with the inertia reaction of the
systen, depending only upon the mass of the system. The relative magnitudes
of the two components are obviously criftically dependent upon the shape of the
spectrum of the generalised force. If the resonant compouent is small
compared with the other, the effect of the damping treatment will be mainly
that of its mass, i.e. "mass law" attenuation will pertain. If the resonant
comp nent formg an appreciable part of the total response, then the criterion
R ™ ( ) may be used tc compare the effects on random acceleration

of equal woights of different treatments. It is convenien® to take the square
root,of) this eriterion and since ? is often much less than one, it becomss
¥ ‘*vl .

The force exerted by a randomly excited system on its supports consistis
of the vector sum of ths exciting forces and the inertia forces corresponding
to tie response of ‘he system. If the system iz responding primarily in one
mode, this totel force will be proportional (aporoximately) to the product
of the displecement of the system and the modulus of the genaralised complex
stiffness of the mod2. (This is exact for a single mass-spring-damper
os<illator, attached to a rigid base, and having the spring and damper in
parallel. A more complete treatmsr® of the forces on the supports of a damped

beam is-given in Chapter VII}L The remes. value of the forece is therafore
proportionsl to

. 2y%
q.ms K R (t-mz )

-sing equation 3.26a, this becomss

[Z, (wa) vf/z]‘[M%' p* x z"l F (Vﬁ] vee(3.29a)
where F (Yt) = ch(?g}i{‘*‘zt)% oo {3.298)

Assuming once again that 2 _%_ the efficiency criterion derived from
this expressica is evidently K -5 pex given weight of treatment

(N.B. for convenience the resultent of the inertia and exciting forces will
be referred to slmply as the Mreaction force" from now on).

It may be noted that the'_%_ast of tge two Psquare-bracketed® terms of
Equation 3.29 becomes (n/ w_ 4< 1 . Since this quentity must
be as large as possible to miumise the rendom force, ', shoudd obviously
be as small as possible. It is therefore <isadvantegeous for & damping
treatment to increase the natural frequency of the system, as far as these
reaction forces are concernsd. Such an increase counteracts, in some measure,
the benefits arising from tne increased damping.

The criteria and relsted response expressions derived in this section
are sumrarised in Table 2.
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II1X.4.2 Sound Trangmigssion through a Single Plate Under Rendom Exeitation

Now suppese that the finite plate of para III.3.1 is subjected on
one side %o random pressurs fluctuations vhich give rise to a generslised
force having a spectrum which is flat (or nsarly flat), as before. The
r.M.S. soitnd pressure transmitted by one of the plate modes of vibration
to the far field on the other side will be proportional to the generalised
r.m.3. acceleration of the plate mode. The effectiveness of a demping treatment
in gtenuating the resonant component of the transmitted pressure is therefore
represented by the same expression as derived above for the r.m.s. gcceleration.
The correspording efficiency criterlon is again the value of R b per given
weight of treatment (for small damping).

At this juncture we may look in more detail at the spictrum of the
random transmitted Zoise, which, like the generalised acceleration, is
proportional to ™ times the spectrum of the generalised displacement.

i.e. to
§p (wn} w?

(Kr - & Mo) + (KR'()Z

With low damping, _‘g_his has & pronounced peak at (or close to) the resonent
frequency (KR/MO)2 . At zero frequency it has the value zero, but at high
frequency it approaches the value

£, (w) [ M9

The high frequency comporenis of the transmitted noise are therefore affected
only by the mass of the plate. It is partly due to this feature that the mean
square pressure haz the two 'components’ derived in Equation 3.28. If the
second of the components is ierge compared with the first (and this may be

£o even if the demping is smell, provided & () has high values zbove the
rescnant frequency) then the transmitbed nois® will have a marked resonsnt

paak in its speirum without being ®predominantly resonant®. This point
was mads in ‘section I.4, Chapter I.

I11.4.3 Random Sound Trarsmigsion throuch en Array of Plates Subjected %o

Bourdsry Layer Pressure Fluctuations

As a further example of the different criteria which must be used
for different systems and response quantities, reference will now be mades io
the work of Kraichnen {11), This considers the acoustic radiation from sn
array of thin, independent, square plates on one side of which a moving
airstresm exerts convecied boundary layer pressur: fluctuations. After
certein simplifying assumptions have been mude, expressions are developed
for the mean sguare radiated sound pressure (i.e. transmitied pressure
in terms of the mesan squers incident pressure and plate parameters. Hany
different modes of plate vibration contribute to the total radiation.

Under longitudinal dipole exeitation, vhich has a distributed copvection
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velocity, the msan square radiation pressure (pf) is found to be cof the form
2 2 - "i yz -1"‘
<ped = <FEY G (pD)ieRrYy o+ S PR ..o(330)

<p2> is the mean square incident pressura, and C, and O, are constants
relating to the pressure digtribution only. a is %he lengtﬁ of the -plate,

O  the mass per unit area, and DR the real part of the flexural rigidity
of the plate. The expression is valid only for small values of ¥ . The
criterion for judging the efficiency of a damping treatment in attenuating

the regiated r.m.s. sound pressure is now the walue of

L
[R%q (0 + co DRYJ?
a W

per given value of @ . (The power % is intreduced to allow for the roct
mean square value).

¥hen the incident pressure fluctwmtions derive Lrom transverse dipole
excitation and a sharp convection velocity, tis msan zguare radiation pressure
is of the form

b T Y o=
GO = G [RADT R ()

the corresponding efficiency criterion foria gamying treatrent in relation teo
the r.m.s. pressure being the value of R ®9Y% per given reight.

Cne of the assumptions made in the derivation of the above expressions
is thet the damping {or loss) factor, # , is the same for each of the modes
contributing tc¢ the radiation. When the damping derives from a visco-elastic
damping treatment, this assumption is imvelid for two reasons:

{a)  The visco-elastic properties of the damping medium are considerably
frequency dependent, and will therefore cause varlations in ¢
from mode to mede on account of the different natural frequencies
involved. :

(v) Constrained layer damping treatments give loss factors snd flerural b
stiffnesses which depend on the wavelength cf the flexural vibration.
The treatments are designed to give optimum damping under certain
conditions of geomeilry and wavelength and theze (onditions nannot be
satisfied by 211 possitle modes. The extension of Xralchnan's
analysis %o cover variations of damping factor and {lexursl stiffness
with frequency in undoubtedly beset with great difficultias. !

II1.5 Estimation of Responge Reductions £rom Criterion Vaiveg -

From the derivations of the expressions for the differsnt criteris,
it is evidenit that for all the barronic rasponses .
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Regponge after treatment _ U
Response befcre treatment ~ Criterion Valus

and for 231 the random respcnses

3

R.M.3. Responge after trestment _ T
R.X.S. Response before treatment ~ Criterion Value

Danoting the value.of thase fractions by R , the percentags reduction of the
response dus to the addition of the treatment is clearly 100(1 - R&.
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Chapter 1%
A Copparison of Twe Diff:rent Unconatrsined Layer Treatments

The eriteria deduced in Chapter IXX will now bs used as o tasis for
comparing two different unconstrained layer treatments, applied uniformly to
one side of an aluminjum plates undergcing flexural vibretion. It will be
shown that vhersas one trestment may be supserlor in its sffect when judged by
one of the criteria, another treatment msy bs superior when judged by another
criterion. Furthermore, one of the criteria may indicate that a glven
treatment is most effective when a certain opiirnm quantity is used, whereas
another eriterion may indicate thal a different optimum quantildy is required.

First of all, it is nscessery to derive the equations of Flexural
motion of the treabted plate in terms of the normal co-ordinates, From this
analysis, expressions must be derived for ths loss factors and stiffneas
ratics coiresponding to the nodes of vibration, in terms of the plate
éimensions and material properties.

Iv.1 The Loss Factor and Stiffuosng Ratioc of g Fiat Plate with an
Unconstrained Laver Treatment, Yibrating in Flexursl Modes

For the sake of simplicity at this stagu, we shall consider a long
narrow plate of unit width and constant thickusss, vibrating in a flexural
mode esssentially as a beam (see Figure 2)). The damping treatment forms a
uniform layer of thickness hj on one side of the basic { metal) plate of
thickness +« The Young's Moduli of the two materials are (1 + iy

e

end E, respectively. The damping of the basic plate will bs ggnored.

If =+, wvas zero, th . would exist a neutral surface of bending, in
the plene of wflich no direct strain would exist at any time during a cycle
of flexursl vibration. The position of this surface may be found bty the usual
composite beam theory. Although it no longer exists in the same physicel
senge when the non-zero is admitted, it still forms a conveniexnt
datun (or origin) for the transverse co-ordinate, z , and will still be
referred to as 'the neutral sur(face".

I% will be assumed that vhen the plate bends, transverse sestions

of the plate-which were initially plane and perpendicular to ﬁt; napbral
is

surface remain plate and perpendicwlar. If the curvature 2
now imposed upon the neutral surface without straining the surfuce itselfl,
the x-wise strain at any point z, below the surface is

N

EX = - zﬂ Sa_f ..a(kol)

The corresponding direct stresses in the two laysrs are respectively

o

. 2 )
x = -—Eé(l-b vfld)Zugiﬂi and 6‘,& = - Em z“g_.wz ves{a2)

2%

Integrating these siresses over the whole cross—sectional area to find the
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total direct losd on the section, it is fourd that the resl part vanishes
(by definition of the neutral surfacs and the usa of Zn ), but the imaginary

part )
X §

- z,dA 2w

4 Y14 L n =

does not vanish. (The symbol 'd* or 'm' in the lower limit position of the
integral implies integration over the sectionszl area of the dsmping or metal
layer respectively). Now if there are no externally applied direct loads nor
signifidant longitudinal inertia forces, therc can at no time exist any
resultent direct load on the section, reml or imaginary. There must therefore
exigt anofher strain and stress system, superimposed upon that due to

32«/ ? above, which ammuls the non-zer> imaginary loud. This other
strain system is, of course, that associated with longitvdinsl vibration of the
plate. By virtue, therefare, of the unsymmetric distribution of the dampi=ug
treatment, damping couplirg exists between the flexural and longitudinai plate
motion. Following Oberst (21), however, we shall first assume that the effect
of this coupling on the plate flexural stiffness and damping is negligible.

The justification for this wili be seen later when the coupling effects arz
included.

%
L
-
3
3
%
3
2
Ef
<
%

YA PR

Next, take moments of the stresses of Eguation 4.2 about the neutral
surface and equate the total (intcgrated) moment to the externally applied
moment, M(x, t). This yislds

oxr

M(xt) = - &{«j'imzida -Ir':'.d(l-o—'ul&)zidla]

a4
Mlxe) = (E1), (1+iq) 2
axz ooo(LoB) K

in vhich (EI). is the total flesursl rigidity of the plate as given by the !
composite beam theory. i.e.

| €1), = E I, +E, I, = E, | 22an + E“Lzﬁda o eldad)
1))

9 is the "flexural loss factor™ of the plate ard & given by

’ E I,
= ‘4 e o(425)
. T T En,

Vhen the plate vibrates under the action of the time-dependent transverse
loading p(x)si“t' » there also exists the transverse inertia loading

-po 894/3%°, f\a being the mass per unit area of the treated plzte. The

L
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ejuation of motion of the plate becomesn

.

s 31~ ot
(El)t(‘ + \'r() 5-;‘-“ + l-\e o = P(K’a e cee(4e6)

We shall consider the diszplacement of the plate in terms of its normal
modes of undamped flexural motion, i.e. thogse mcdss which satisfy the
homogeneoug equation 4.6 with Q= 0 . Hence we write

®
w o= Z an":h(x) N V%))

n=l

wkere the f!s are the non-dimensicnal normal modes and the q's the corres-
ponding normil co-ordinates. The equations for the q'a may how be obtained
in the usual way by substituting Equation 4.7 into 4.6, multiplying throughout
by fn and integrating over ths whole length, a , of the plate. Provided
there ar@ no concentrated springs attached to the plate, the orthogonal
properties of the modes may be used to show tt 1t the equation of motion
corresponding to the nth co-crdinate is indepencent of any other co-ordinate.
i.e. no damping coupling exiets between the flexural modes, and we have

2 L
Gl pofaa - g (ED G [(R] o

= tat
= j p(x) ~Fn dx. e eee(Le8)

(-]

The generalised stiffness of the plate ccrresponding to the nth
mode and co-ordinate is therefore

K = (El) j‘(pw\ vee(4.9)

n

and the generalised hysteretic damping coefficient is

Hy = q(e), r({':)zd.x , ee+(4.10)

n

The "generalised modal loss factor®, Hn/K » is simply v (the plate flexural
logs factor) and is independsat of the Bcad of trangversge vibration.

Now consider the plate btefore being treated, vibrating in the same
mode. The flexural rigidity is (EI),, and the mass per unlt length is P
The equation of motion in the nth co—-ordinate is

q, Fv?:a.x . %n(ff)uf“’:f@‘x - r P(*)’Fn"**&m...(z,.n)

The ratio of the generalised stiffnesses in this m~de of the treated and
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untreated olates is then

R = (ex), [(ex), RIRT)

e st U TN o a4

which again is independent of the mode of irensverge vibration , and is simply
¢ _ the ratio of the flexural rigidities of ihe two plates.

} Explicit expresgions for R and the modal loss factor for the flat

\ plats may now be derived using Equations 4.4 and 4.5. Writing h3/h1 = ¥,
. and Ed/Em =e, wve find

t—ns.

E L, = E “‘?{i + 3(6'3)1(“"‘:32} ; §I, = &,_b?{e’t3+ 3(et}(\+'<)1},

. 2 (t-&»e’l’)z

12 4 + et)

3
since (EI), = E h /l?. the stiffness ratio becomes

< 3
= EmTw = 1 +3ex0+T) T (3
{ (ET), (1 +e%)?

Likewige, using Equation 4.5 and the above expressions, we find

Ea Ig {e.’t3 +~ 3e't(&+'c)z};{i
= e e g - s - ooo(lpolly)
1 1 Enl, +E4 T, T (1 +ex}?

In addition to the modal loss factor snd stiffness ratio, the stress
ratio is also required in some of the eriteria (see para IIT.2.3). For the
unconstrained Jayer treatment this is simply the ratio of the distances betwaen
the free plate surface and the neutral surface after and before treasement.

Before treatment, the distance is hl/2 . After tresiment it is

h‘{lx+ et +<’t2}

2 I #e7%T

[PTRRTORN

——

) The stress ratio is evidently.

i oL“‘ l-i-'Z.c,’Z:’-i-e'tz

| +27

We now return to consider the effect of the coupling between the
flexuralbdlongitudinal motion of the damped plate. The longitudinal
; displacement will be represented by the term wu_, which is the x~wise
displacement of the neutral surface, is a function of X%, and is constant
across the section. The total strain at the point z, is now

2 -
Ex - é_&o - zn ?_,‘f H eee (4115)
ox Ix*
Corresponding to this strgin disztribution is %he total load on thes cross-
section
AT
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E. S [3u, fox -z, a’-w/a.a]ga + E (v +‘.\2‘)L[au./ax - 2,8% 2] dA.

(L)

This reduces %o
{E.RAL + Eénd(l-biqa‘)}au.[ax - i?&EdB’di* a‘w['?xz oo {ba16)

sinecs
E,{z,an + Eajz,.dh = 0
™~ 4

Ap and A; are the total cross-sectional areas of the metal and damping layors,
and 'z'm, 34 are the distances from their centroids to the neutral surface.

If longitudinal inertia forces are present, the x-wise derivative of this
load must be equated to the sum of the longitudinal inertia loading, ‘;8 o<y 332,
and a term assoclated with the angular acceleration of the section, v/ 3X 3t
This term is present since the centre of gravity of the section does not coincide
with the neutral surface. XNow the natural frequencies of the flexural vibratien
of practical aeroplane plates are relutively so low that both of these longitudinal
inertia loadings ar. negligible. Proceeding on this assumption, and equating the 2
total direct load to zero, we obtain the relationship between auo/ Sx and %/ax":

e _ LEan R Za O
ox EmPu + EgA (8 +in,) 3x*

Substituting this into Equation 4.15, multiplying by the eppropriate E
and integrating the moment of the stresses cver the whele sectional area, we
obtain the new relationship between the ending moment and the cuzrvature. Af%er
soms reduction, this becomes

oo {4e17)

202,22 2
Mxt) = {(e:x‘;ﬁ(uiq) L 2y eee(4.18)
' B + gy liaig) | 352

The general form of this is similar to that of Equation 4.3, in that the
bending moment is siill proportional to the curvature, and that the constant of
proportionality (the complex flexural rigidty) depends on the dimensions of tne
erogs—-section only together with the material proverties. The =quations of
motion of the plate may then be set up as before, using the same normal co-ordinates
and modes. The stiffness ratio for each mode will still be proportional to
the flexural rigidity of the plate, and the modal loss factors will still be
proportional to the plate flexural loss factor.

The first term in the large brackets of Equation 4.18 is the complex
flexaral rigidity of Equation 4.3, obtained by ignoring the coupling. The second
term therefore represents the effect of the coupling. If we now put A /4 = %,.
(the ratio of the thicknessess of the two layers) and Ed/Em =a, thisqse’gond
term becomes

-

2 2 2

E\h, 2, 3 el ® HeT) iy, 4 (e7) eee (4219)
(4 + 1 fe¥) ¢ vl: ¢ (14 1[3'2)24-\@:.‘

We may nov compare the magnitude of this term with the first term of

Squation 4.18, using scme typical valyes of T and e . A stiff damping

treatment may have Eg = 20° 1b, in.~2 , and Mg = Qe35. Applied to an

sluninium olate, this gives ¢ = 0.1. Taking T = 10 (a very largs value),

the bracketed term of expressbn 4.19 becomes 0.06 - 17&0.03. It will be

smaller than thig for smaller values of e or T o Now the term outside the

hrackst, EdAaZg” , msg be regarded as bring 2ne ‘bart” of the total flexural
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rigidity (EI)y , and can never be greater than the total. With o = 0,1

and T

of Equation 4.16 is therefore spproximately (EI)
effect of the coupling cn the

= 10, it is approximately ome third of (EI)¢ .

§

real part of the fl

The second term
(0.02 ~ 4 ,0.01),

The
sural stif?ness is therefore

to increase it by only 2% , when the large values zre given to e and % .

Considering the imaginary part of Equation 4,18 , and using the expanded

form of (EI)

froem Equations 4,5 and 4d4 , it can be shown that the effect

of the couplggg i1s to reduce it by sbout 135 when the same values of ¢ and ¥

are used as ibove.

It is evident, therefore, that for the praciical conditions

t0 he dealt with in subsequent parts of this chapter, we may use the results
of the theory in which the coupling was ignored.

IV.2 A Comparison of the Effects of Egual Weights of Uifferent Treatments

The treatmenis to be considered are Hwo different grades of Aquaplas,

and will be referred to as Treatment A and Treatment B .
of f£illed resins, different tillers being used in each case,

They both co

naist

Their properties,

as deduced from laboretory tests on simple treated specimens a2t a given

temperature and frequency, ares

Treatment A

Treatment B

4

na

Specific Gravity

860,000 1lb.in.
0.19
1.20

~2

1,080,000 1b.in.
0.33
1.68

~2

Using this data, values have been obipined for the loss factor
and the stiffness ratio R for a2 wiform plute covered umiformly with

different quantities of the treatments,
having E

= 10.

An 2luminium plate has been concidered,

b in® and a specific gravity of 2.84 . R azd q are

plotted iR Figurss 22 and 23, the abscisssze being the weight of the treatment

as a fraction of the velght of the plate.

Tue highest value of the weight ratio

{10) is not intended to represent s prectical configuration, but is included

to indicate the ultimate trends.

From these values of R gand

the values have been calculated of

selected criteriz from the preceding chapter and these are plotited in Figures

22 %o 25.

It should be noticed that st this stage the rass ratio term,

e,

has been onitted from the ceriteria as the compzrison between the two treatments
is being carried out on an equal weight basis.
will therefore be the same for both treatments and need not be included, In
section IV.4 the mass effect is included in order to compare the effecicof

different amounts of the scme treatment.

The effect of ihe wass ternm

The criterion relating to harmonic displacement amplitude (H®y ) is shown
in Pigure 23, together with the logs factor,
relating to haraonic sound pressure transnditte

plate.%)

{n ‘2‘1

layer noise (RS

Pigure 24 shews the criteria re
, randem reaction force O

).

, which is the criterion

at resonance through a fiaite

ting to random vibration amplitude
end random transmitted boundary
(9 is small enough here to justify putting

F.(q) =F (91 =1. Figure 25 csuovs the criteria relating tc the pending

stress at thefree surface of
or rendon conditions ( R n &

plate whe
and ;ébb

nl
1

<

Z}bra ing under harmonic resonant
Tespectively).

Before comparing the curves for <the two treatmwents, it is us2ful %o
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observe the neture of the curves for R  and +» Since small awmounts of
treatment add little to the plate stiffness, ¥ 4is litile greeter than

unity 2t low wveight ratios. As ithe treatment weight increases to very

large valuves, the flexursl stiffness 2f the treatment about its own

principal gxis becomes the domimant part of the totsl flexurel stiffness, Tnis
18 theref~re then approximately proportionsl to the cube of the thickness

(and weight) of the treatment, which is also evident from equation 4.13. The
stiffness retio therefore increascs monotunicallv with the treatment weight.

The loss factor, § , increases linearly with treatment weight with
spall amounts of treatment put passes through a2 maximum as the weight becomes
larger. After this, it oscillates slightly and gporoaches *he asymatotic
value of M43 . The flexural loss factor cannot exceed the loss factor of
the material providing the dawping, as eguution 4.l4 shows.

Comparing now the curves for treatments A and R, it will be seen
from Figure 22 thet trea%ment A , w1th the smaller value of Em. pevertheless
provides & higher stiffness ratio KR theh treatment B . This is due to
the lower density of treatmest A , which therefore has & greater thickness for
a given weight of materiel and a correspondingly greater second moment of arss
about the neutral surface of the composite plate. This has an important beari
upon the criteria Hvy and K%q% s waich are shown in Figures 23 ard 24.

At low treastment weights the value of each of these criteria is higher for
treatment B (with the superior meterial loss factor and Young's Modulus) then
for A . At higher treatment weights this superiority is reversed due to
ireatment 4 providing the higher stiffmess ratio. At the low treatment weights,
where the stiffness ratio is little,greater than unity, the tswo criteria
epproach the values of v and % respectively, and the treaiment

providing the highest loss factor 1 is eutomatically superior.

Consider now the criterion K'% 1% (Figure 24), relsting to random
reaction forces, or to the resonan! component of rendom transmitted sound
ressure. Since the stiffness rati.) is raised to a negative power in this
criterion, the treatment providing the lower stiffness ratio but the highev
lcss factor (treatment B) is inevitably superior over the whole weight range.
I{ may be seen that eguation 3.19 giving thg;_cri‘berion re ti_gg so one form
of coincidence B‘_an_g_mission, contains 7 ¥ 7% , i.e. (R "%y 32 The
criterion R™*% 9 ° may therefore be used in relation to both random rezetion
forces and this form of coincidence transmission.

The criterion &*13 (Figure 24) elso shows treatment B 40 be superior
up to, and beyond, a weight ratio of 10 on account of the higher loss lactor
and the very smell power to which & is raised. A maximum appears to occur
at the weight ratio of about 10, but ths curves will inevitably rise at higher

(very impracticeble) weight ratios on account of the positive power of R

and the asymototic nature of 7 -

The eriteria relating to the surface bending stresses {Figure 25)
follow a generelly similar trend to the criteria reletiag to vibration
displaceisnt amplitudes, Over the lower weight range, ireatment B is
superior to A under both recdom and harmonic conditions, but treatment A
is superior under random conditions above a wei%17t ratio of abcut 0.5 . This
superiority derives from the larger values of R 4nZ for treatment A above
this weight, which implies smaller vibraticn ampliﬁxdesa The superiority
of A over B does no%, however, become more marked as the weight increases




2
in ths seme manner as exhibited by R4 q%'. This is dus % the distance
betyeen the free plate surface and the composite plate meutral surface being
_greater for the lower density trsatment & than for B . As the welght of
treatment increases, this distance with tireatment A becomec increasingly,
greater thac thet with D . It is this letter effect thed causes et
for treatmeat 4 4o be slightly 4nferior to that for B throughout the weight

renge desp! ¢ the superiurity of Kv for A above a weight ratio of
about 0.75.

IV.3 4 Commarison of Different Amounts of the Szme Treatment

The criteria considered in the previous section did not coptain the mess
rgtio verm 8 . This was omitted since gousl weiphts of Jifferent treatments
were being compered. HNow a damping trestment may add considerably to the
weight of the thin plating of aercplene structures. Waen considering the
eifect on the response of varying the quaniity of e given treatment, the mess
effect must therefore be included in the eriterion used. Figure 2¢€ shows some
of the criteria considered in the other figures, but with the approprister maSs
raetio term included,

The eriteris relating tc both boundery layer noise end the noise
transmitted through a single plete increase steadily throughout the range of
weights considered, but comparison with Figure 24 shows that over the upper

part of the range the increase is due mostly (if not entirely) to the increasing
mess. The random reaction force criterion shows that the treatments have g
maxioum effect upon random Xsaciion forces at optisum treatment weights of

atout 0.6 and 0.7% of the weight of tne plate for treatments A and B
respectively. These compare with optimum weights of about 1.5 and 2.0

required {o give maxdmum values to N for these treaiments.

The eritericn relating tc harmonic gound pressure trassmitted through 2
finite plate (9% ) will not exhibit the meximuz shown by ¢ alone for these
treatments, but will rise steadily above & relative ireatment weight of zbout
1, roughly in proporticn 0 © .,

Equation 3.4 show; thal the harmonic displecement amplitude, and
therefore the corresponding surface bending stress are independent of © ;
the relevant curves of Figures 22 znd 25 zay thereforz be comsiiered in the
present discus.ion, Each of these curves is monclonically inereasing,
impiying that increesing the amount of the treaiment will slweys provide a
further reduction in the ampiiunde of resopant vibratisn snd stress. The
r.m.5. (random} displecement and siress are dependent upon the mass,ratio @,
e coriespgading criteriz for the damping treatmen deing 949\%\25 and
ORIV Td™ | Since § ig ralsed to a positive power, these exp: essi ons
will still increase monotenicnlly with increasing weight of treatwent.

I¥.4 Hesoomse Feductions Obtainzble Fsing the Treatments

We now use the calculated values of the criteris in conjunction with the
initial (untreeted) structural demping values of section II.6 in order to
estinate respongse reductions. For this we require the expressions quoted in
section II1.5, in which tbe mass ratio term must be included in the criteria.
Tne initial loss factor, s, , to be taken in these expressions is 2 x the
initia} damping ratio, and willhtherefore heve the minimum veiue of 0,01 and
the maximun value of 0.025. 'zi will then bte 0.1 ead 0.16 respectively.
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The responses having cxiterion values which increese monotonieally can
obviously be reduced by any required amount Af sufficient itreatweat is added.
We shall therefore consider the reductions of these resypuises when the weight

.of the *reasm:nt is 50% of the plate weight, The raudom reaction force

critericn, however, passes through a maxinum velue. The response reduction
corresponding to this value will be quoted,

The folilowing table sets out the percentage reductions of gelected
respenses under the sbove conditions:

Response Treatment A Treatment B
Low High ; Low 1; | High y;
Random Surface Stress 3% UE 84% 4%
Random Heaction Force 6L% 433 % 59%
Boundary Layer Noise 80% 69% 82% T2%
Harmonic Displacement 96% 90% 96.5% 91%

S Tt e <

These reductions have been obtainsd from the stiffness rativs end loss
factors of a simple plate with no reinforecing such as stringers and fremes.
When the plate forms part of a stringer reinforced structure, the stringers
may contribute considerably to the total potential energy of the coup.ed
nlate~-stringer modes of vibration. If the plate stiffness is now increased.
by the addition of the damping treatment to R iimes its initial stiffaness,
the overgll modal stiffness will increase by a smaller factor., The stiffness
ratios used above are therefore overestimates of those to be expected in
reinforced structures. Likewise, the modal loss factor inerements arising
from the additior of the treatment to the plate must be less thanm the plate
loss factors calculated above, since the loss factor of the whole system
cannot under any circumstances be grester than that of its sub-system with
the greatest loss factor.

It follows therefore that the response reductions quoted above fcr the
surfece stress, boundary lsyer noise and hermornic displacement are certainly
over~estimetes of the reductions to he obtained on real structures. The
random inertia force reduction is al.so most prolably overestimated, ‘but being
proporticnal to the fourth root of tne stiffness, a stiffness reduction
will cause a slight response reductiono. Since the fourth root is involved,
hovever, this is a smell effect in the present srgument and will not compare
with the effect of the over-estimated loss factor, The reductions quoted
in the ®"Low ) ." columns are therefore greater than those whick may be obtained
with real reinforced structures, and therefore set en tpper bound to the
response reductions which can be achieved with tbese treatments,

IV.5 foucluding Remarks

In comparing the effectiveness of the two treatments, it has beep showm
that with relatively smell weights of damping treatment, the treatment giving
the zreatest loss Tactor to the whole system is suverior es judged by each
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of the criteria. This follows from $he fact that at smail relelive weights tbe
stiffness and mass increases are negligidle for she partieuiar demping
configurations considered. The loss factor is then the oply wperamyter wbishk
chenges appreciably when the treaissnt is addsf. & greater relative weights,
it hes been shown that one treptment havizs a lower density, o lower stiffness
and a lower material loss factor {han énotker can peresrtheless be more
efficient (on an equal weight hasic) im attenuating vibration siiaplacement
amplitudes and plate surface bending stresses.

The criteria relating to harmonic and random reacticon forces show that
there are optinum quentities of treatment to give the greatest effects, mt
the optimum quantities differ for the harmonic and random conditions, If the
amount actually used is mid-way between two vaziuves, (the geomutric mcan, sey)
the reduction in effectiveness below the meximum realizeable is very slight.
The other criteria considered ere all monotonically increasing with increase
of trestment weight, imolying that increasing the amount of treatmeni used
will always further reduce the resvonse.

The implications of these results are that when demping 4reatments ere
being considered for use on light aluminium structures, their effectivencss
cannot be sufficiently defined by stating only the loss factor obtainable from
a2 given amount of the treatment. The factor by which the stiffnoss of th:
structure is increased must also be given. This implies that the results of
the standard Geiger test, wherety the time rate of decay of a treated steel
plate is given as the measure of the effectiveness of the treatment, is glso
iansufficient. This time rate of decay is (in effect) but an giteruetive
form of presenting the value of the loss factor (see Kerwin (29)}.,

Thz fact that a poorer gquality treatment has been shown to bave 2
superior effect, in some instances, than one of higher quality, suggests that
the optimum design or compouading of a treztment will be different depending
on the particular wvibration response quantity it dis required to attezuvate,

It mzy be thet damping treetments can be developed further along these lines,
a different treaiment being designed and recommended for differect

applicetions.

The inclusion of the mass and stiffness effects into the criteria for
assessing damping treatments will be more thau ever importent when ™space®
damping techniques are being considered. In these technigues, the darping
layer is seperated from the plate by a shear-stiff, light spacer layer. Very
darge stiffpess increases can then be expecied for relatively smell weights

of trestment,
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Chaoter V

The Damped Sandwich Plate

V.1l Scope of Chapter V

This chapter presenis the theory of the response to external pressure
fluctust ong of a flat, rectangular sandwich plate with a damped core and
simply-sv,ported edges. The equstions of motion of the plate are derived,
and their solutions are found In terus of a series of sinusoidael nodes of
transverse displacement. Expressions are derived for the displaccement in each
mode and also for the surface stresses in the face-plates. From these are
developed expressions for the leoss factor and stiffness ratio for each mode.

Consideration is then given to the dependence of the modal loss factor
and the resouant and random response criteria upon the wavelength, core
thickness and core dynamic shear modulus. The optimum design & damped plates
is sought. Comparisons are made tetween the responses of demped sandwich
plates with different core thicknesses of optimum stiffness, and the response
of & solid plate of equal weight. A comparison is also made between the
stiffness at high and low frequencies of the two plates. It appears that
maximum damping and minimum response can only be obtained at the expanse of
the static (i.e. very low frequency) stiffness. The sensitivity of the
response to effects of temperature on the core properties is also considered.

V.2 Review of Former Investigations

A theoretical analysis of ti.e damping of a sandwich plate was first
conducted by Plass (23), who considered the face plates to be thin membranes
and restricted the work to a cne-dimensional problem. In effect, therefore,
a sandwich beam was considered. No optimum design of the piate was sought.

Ross, Kerwin and Dyer (24) considered the demped ssndwich beam with .
finite thickmess face-pletes, but the core thickness wa« taken to be small '
compared with the face-pletes. The flexurel loss factor was the orly derping
'varameter' discussed and was shown tc be dependent on both flexural wavelength .
ard cre thickeess. The core damping was introduced by ascribing to the
core the complex shear modulus, G{1 + i.ﬁ). The equation of motion of the
beam wes not derived in this apaiysis.

Kurtze and Watters (25) heve analysed the acoustic transmission loss
characteristics of sandwich beams and have shoun that higher flexural loss 3
factors can be obtained with this arrangement than with unconstreained layers.
They show, however, that the sandwich configuretion is inferior to the
unconstrained treatment as fer as frequency response is concerned. This
follows from the dependence of the loss factor on the flexural wavelength.

More recently, Yu (26) jas analysed the the damping of two dimensional
flat plates, including hysteretic damping (complex moduli) in both core and
face-plates. JNeriving the eguations of mution of the plate, he proceeds to
discuss the damping of the plate in terms of the logsrithmic decrement for
which he obtains expressions involving the (differect) loss factors of each
of the three layers. The actual response of the plate to time~deperdent
loading is not considered.




Freudenthal and Bieni«X (27) have analvsed the forced vibrations of
flat and curved damped sandwich plates, considering the displacement amplitudes
excited by harmonic loading. A general responve theory is presented based
vn the ‘normal mode' aporoach, whereby the total response is exprcssed as the
infinite series of the responses in 4hne indiviiuael normal modes. Ho optimum
configurations are investigated, nor exre the effecvis of varying the core
thickness or dynamic properties.

V.2 The Response of a Damped Sandwich Plate to Normsl Fluchueting Pressures
V.2.1 Derivation of the Jifferentis] Eauations of Motion

The sandwich plates to be considered in this chepter are flat and
rectangular, simply supported alcng all four edges. Acting on the plate
are harmonic pressureswhich may vary in amplitude over the surface. Tae
two face-~plates are of uniform end eaual thickness h. , and have a Young's
Modulus of £ . The soft core has a constant thickness h, and is considered
to be isotropic with the complex shear modulus G, =G (1 2,13) . The
following restrictions are made upon the strains and stresses withiv the
plate:

(i) There is no significant direct strein in the core face-plates
perpendicvler to the plane of the face-pletes. Both the plates
and the core therefore deflect by the same amount normel to the plate
surface.

(1) There is no sign¥icant shear strain across the depth of the face-plates
i.e. Ty, and Ty, in the face-plates are ignored. (See Figure 25
for the notation used).

(iii) Direct stresses in the soft core parallel to the plate surface are
very much smeller than the stresses in the face-pletes, and may
therefore be ignored.

Inertia forces associated with both normel and in-plane accelerations are
initially included, but the in-pi-ne inertis forces (corresponding to the
usual 'rotatory' inertia effeci. ; are subsequently dropped for simplicity.
Figure 25 shows the compleie system of co-ordinate axes, displacements,
stresses and moments used in the analysis. It will be noticed that ¥
is the -shear stress in the plate, wheress ?;z end T ere ‘the she
stresses in the core. No further distinctior'Heed be matie here between
core and face-plate shear siresses as neither ¥ in the core nor ¥
and ‘ryz in the face-plates are referred to. x&

Consider now the equilibrium of the moments, shears and normal Joeding
on the element .0x.dy of the upper face-plzte. The normal lcading
derives from the Dormel tensile (or compressive) stress in the core together
with the externally spplied pressure on the outside surface. Denote the
totel downward acting loading on the upper plate elemert by 4, . Acting on
the lower surface of this element are shear tractions of megnitude
‘txz dx.dy and T _ dx.dy . For equilibrium of thest tractions and
the“loading with the¥?H s M, and M moments on tl.: edges of the element,
it is necessary that ¥4 X

2 2 2z
oM M,
X - 2 e MKY + g >4

ox* Oxdy oy*

aTx; + B'C,g} .“(501)
ox oy

b r ™,

h,
=-9, -3
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Now

Tz = G {2 3"} & T =G{2.‘r! .3.:} vee(5:2) ,
2 { + core Iz < +32 <ovg .

c13x 7 3z
and since the core dirsct stresses, o, and 0y , and the core x and
will not vary over

Y inmertia forces are to be neglected, T, and <%
the depth of the core. Furthe., w does“hot vary ovS% the core depthie

Tt follows that ©9u/ dz is constant across the depth and is given by

PO G ok ¥ - 5.9
22 hs
vhere \% and u, are the x~wisc displacements of the mid-surfaces of the
top and bottom plates respectively. Hence

. 4

-

.

e

are the y-wise displacements of the top and bottom plate
mid-surfices. Su%stituting from Equations 5.4 and 5.5 into Equetiun 5.1, and
replacing M, My , and by the ssual expressions involving w and D
(the face-plate flexural rigidity) the face-plate equation becenes

% 2% *w Gc_h ) jzlluv w

where v, and w

T, = G {(14- h.‘)Bw u"'u"} (5.4) {
Xz (3 — ——ra— o oo .
hy " Ox hz é
Similarly, it is shown that }
§
Ty, = Gc{(! + b-)éﬁ - 12__:‘_’:,} .. o(5-5) {
4

ax‘ 3:&333" a:y‘l 2h3
— ;3:, 91“ eee(5eH)
2(37. + Sy )}

in which have been used the relationships wp = -%y , v = ~v7 . These are
readily shown to be true (28) for the flexural modes 10 be considered in
this chepter. An eguation similar to 5.6 hoids for the bottom plate,
subjected to the total normal loading gy .

R o 73 e V™ A A MRS <

Next consider the equilibrium of the plate e€lement under the action
Jf the surface shear tractions, the edge direct siresses and the in-plare
inertia forces. The direct stresses on the edges may be considered as
consisting of mwniform stresses O, , g1 (the 'mid-plane' stresses)
upon vhich are superimposed plate g%nding stresses deriving from i, , M
and varying linearly across the plate depth frox zere at the mid-plane
Likewise, the sbear stresses on the edges consist of mid-plene shear

surface.
stresses ’E. 1 » together with linearly varying shear stresses deriving
from the i%omen‘l‘. which are zero at the mid-plane surface. Tor

equilibrium of the forces in the 2 and y directions, only the mid.-plane
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stresses need be considered. For equilivrium in the x-direction:

h § 2% '?’Txy" - h Fin, T (5.7} L
Ve Y T b e

and in the y-direction

22
h Bo‘ + f—:gle —4 ¥ “h ’8~v‘ o T 2 YR (508)
B:i ox ﬁ‘ ' 51% 24
The stress-strain relztionships for the plutes are
( P
U = E Ouy + VMB,V, § .
(1~ %) 1 9x 3y ;

(1- v2)| 8% ~

e

s N T R R £

T - E v P,
ot 2{1+v) { * 3y }l

TASRAICA NS ARIN

¥ TRy SN
N . ! et
3ok Mo tmcias armesakiniummy ot A £ za b

Using -these together with Equations 5.4 and 5 &, the equilibriur -equzations
5.7 ané 5.5 ‘become

(1-+%) Ax* 24 en) Dy* 'h-

7,_) 9% M. 4 = 373«',
P 2y 2(“\’) Bx?g

+hy) 9w wer{5.5)
DK

Ry

810

or 2(1-v) 223y

E 32.\/‘ - £ B?Ty, . 25&
Li-v%) By2 201+v) x> hh,

IO Ty A 4 g e Dy v A ey B Ak Yo

) v ees(5.10)
) = 3 1 ¥ hz Ev
: ty .
k
Next consider the equilibrium of the direct and shear gtresses normal to +tn= 4 5
‘piete surface. Suppose the core exerds a tensile strsss

0,7 on the botton
O, on the upper su-zce

gurface of the top plate » end 2 teunsile stress of
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of the bottom pluote. The normdl idvertia fores par unit area on each o the
Tare piates is

(i.e. asting iz ke negative z~direation). In addition 10 those loudings,
there will in geneval be an extornal pressure plg'x,:r, 5 zcting on the
suter surfasy of the upper plate and u pressuze "py(x, ¥, 4} =ciing on ihe
tottom surface of the lower plate. The totdl dovnwavrd acting pressure,
applied externglly, is thersiore

?z'(‘xsyn't') - ’?2()@:‘.’5-1{} = ?(x?jv&')

The totel loadings on each glatxs are then

q, = Bxy®= pph i‘:’ + T, aen (511
Z
q{z = —-,%(xég;tlm ’f’pfh{%i:% - g ees{3.22)

An zxewent of the core, Jdx.dy 3is subjected to tho normédl fensile stresses
o,, aad G on its 10p and bottom faces, &ad to the transverse irwctie
foice

o Pn:h Bm Jké’

For equilitrimm of this -elemen?, e must have

L (2% DXz} 1, S s .
. () m—& e ..-‘._Jé ra— - B o 9. B G ~ooe (*\ 013)
- 2% J R e ’

Adding Equations 5,41, 5.12 and 5.13 , and putding 2{3 hl - nchB = /» {the
total mas: -er anit area of tke whole m.z.te; 35383 ! !

e L , O
%z*@g = p(x,;;.ia)«-f i «é-hz{ an -.5533}

Since the two face piates deflect 4transversely by the sese amount it is
necessary that 9y =10y - Hence

g, = glayt) - ,»9*' E’giatﬂ- + 3"3”1} oo (5243
e 2 be" 2 By

wEt

LIRS

R S T

LA b ey T,

e g

LEATPEA AR AN

AR Ny St

s

\opn ¢
e
A

ARA TN T

;
4

NG




Substituting this into Equations 5.6 and using Equations 5.4 and 5.5 yields

-4 1 2
D{%‘:\% .2 03::2 . Qu;} G, (h, *h”){(h h,)( Bw) _
k=3 x

Y 3y 2hy o
2
-2(3;;. . _21\_:,)} i - plxyt) .ee(5.15)
-3 3y 2 ot 2

juations 5.9, 5.10 and 5.15 constitute tke differsatial equations of motion
which must he satisfied by the displacement components s V., and w when
the plate 1s vibrating under the action of the fluctuating pressure
p(x,5,t}.

V.2.2 Solution of the Differentipl Equations for a Simmlv Supported
Rectzngular Plate wider Harmonic Excitation

The modesof free vibration of an undampcd sundwich plate with these
edge conditions are represented by

. wt
w = U__ cos “;_rx s "‘l’:’ e'”

-

] mn

it
€

N

eee(5.16)

nilx mRy
Vy = an $m = o5 Y

. . wwt
W nitx mry o'

w nSlﬂ < b3,

.

J

vhere a is the length and U is the breadik of the plate. The ratios
H : : have specific {real) values for each mode. The forced
wbbion 5’? a damped plate may bs represented by an infinite series of modes

of the type of Equctions 5.16, bat tke ratios U :V__ :VW will not be the

same as for the natural undamped modes, amnd and wil1"Be cogglex, indicating that
the displacerments are not in phase with one another,

In order to find the coefficients W__ (i.e. the amplitudes of

transversz wotion ot the modes), Yirst represent the pressure distribution
on the plate by the infinite series

plxyt) = Zz Ay Sin 87X sin f“-E’ .ol (5.17)
m nh

vhere the coefficient # varies harmonicelly if p(x,5,t) varies
harmonically. If Egquations 5.16 and 5.17 are substituted into Ecuation
5.15, it is seen that the U's , V's and W's are indevsndeat of tke B's ,
C's end D's and the A's are the only coefficients of the pressure
series that are required. These are easily shown to be given by

b >
) = 4 (x,y.t) 5in 00X sin MY Ay d ...(5.18)
Amn ab LL Py 2 —El’ 4 (
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Picthermore, the substitution of Eqationz 5. 16 and 5.17 into Equations 5.9:
5,i¢ and 5.15 yields a set of equations for Umn ,» ¥, “mn which are
comp-etely independent of the set for Ur s Vr and" Urs , etc. 1.,e. there
is no coupling between the modes of toansVerse Si.spla:-ament, damping or

otherwise.

Attention will noy be restricted to harmonic pressure fluctuations,
cothat A = JA | e¥® T, Equations 5.9 and 5.10 are now used o obtein
U and ™  in t%%s of W__ . Notice that the third and the fourth
+50c on thB™Meft hand sides 6f Equations 5.9 and 5.10 become

26 2 wt 26 2
{ e _pr}ume &{mﬁdfpw}vme

nhy

1wt

The terms p w2 in these will be neglected from now on. i.e. we ignore
the inertia £Brces in the plenes of the face-plates, and so suporess the
appearance of "thickness-shear” modes in the final results. This is
justifiable so leng as

2 G 2
w & < (= “’ts}
Pph'h3

IX) ts is the frequency of the 'pure thickness-shear mode' in the absence of
any coupling with the transverse motion. It will almost certairnly always
be well above the frequency of the fundamental plate flexural node for any
practical damped plate configuration, tut a check should always bte made to
ensure that this condition is being satisfied when calculations are zade on
the basis of the subsequent theory.

Introducing the symbols r = (.t_’. y(i')
m n
2 2
a = r+t T Eph (m) BNCR!

Ecuations 5.9 and 5.10 yield

u = + W, TO7 (h, +h5) ...(5.20)
o "2b {1+ ¥ on)
and Ym = +W_ _TEmih + ha) ..(5.21)

™2b(1 + )

[y

Now using these together with Equations 5.16 and substituting into Equation
5.15, it is fcund that

4 2 2 2
w_ J2DT ot (%5 1) [l + M] - pwi - VA1
"‘“{ b* L+ g, r ™ (5.22)
where T = hfa /h‘
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For a visco-elustic (nigh~polymer) core material, G_ will be complex and
equal to G(1 + 1), and ¢ _ will therefore also Se complex. Purthermors
€ for the plates may be comgiex, but when light alloy face plates are
considered, the imaginary component may be neglascted. The term within ine
trackets op the left nand side of Equation 5.22 may therefore be writwen in
the form

[‘ . 3(”':)1] - 4Rm(xa. 'uzm} .eo(5.23)

which equation defines the symbels R and % . The explicit forms of
R and Non will be considered la%r, and %ey will be ideptified as the
modal stiffneSs ratio and loss factor respectively.

Equaticn £.22 permits the evaluati-m of all the 'generalised co~ordinates'’
W__, representing the transverse displacements of the plate in its different
rodez. The resonant frequency, w __ , of the mode mn is giver by the
vanishing of the resl part of the 15Tt hand side of Equatfon 5.22. i.e.

2 - 2DR" 4i 2 Vi
®,, = ges mo(Pelan L5220

The term

3
Qg_ me(r s l)zfr R
P
th

is proportional to the generalised stiffness of the mn™ mede; f. is
proportionral to the gensralised mass, and

n

» v
"_Z‘_]l_'_'?__ m* {,fzﬁrl) 4R
psr
to the generalised hysteretic darping coefficient.

mn Tan

Nov consider a single, s0lid plade of thickness 2h, and of Young's
Modulus E , subjected to the samz harmonic przssure loadingthp(x,y,t). In
the absence of damping, the response of this plate in the mn™" mode is given by

&
wmn {8D%m4 (1‘2-+ i)" - ’uwz} = |Apal ee.(5.25)
in which
&
ST):;-Y- mT (0% 1)3
>
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(to be denoted by X is proportional to the generalised stiffness of the
solid plate. (D stmh cor»-e.,pomis to the plate of thickness h ). It is now
svident that the facter R g Tatio of the generalised stiffness of
the damped sandwich plate inmhe mode to thet of the solid plate of
thickness 2h, in the sgpe mode, and is therefore the ¥stiffness ratio®
corresponding"'to the mn"“® mode.

Eiuation 5.22 may now te written in the fourm

Won = | Aol - eee(5.26)

Ko Roon (8 4 M) = poo”

which shows clearly that w __  1is the modal loss facter corresponding to fne
mth mode. The total transyerse deflection of the plate at any point and
instant is

iwt - nTx - mTy

W(X ’t} p—1 Z Z ‘Aﬂ\h‘ [+ St a. sin B ...(5.27)
k

2
msi szl N mn(“”lmn - ¥

¥.2.3 The EBxpressions for the Stiffness Ratio and the Loss Fzctor

The stiffness ratio R and the loss factor 9 are defined
by Equation 5.23. When the coliplex shear modulus G(1 + E‘“,a) 18 nsed in
} (Equation 5.19), we mey write

(Ir‘ = Yona seel5.26)
na {ts+ aF)

in wkich \}'m is real and contains the real part only of the core shear

modulus. i.el

2
_ (e w Efh )
b = oA G(b[ e 29

This is one of the =most important parameters on which the sandwich plate
stiffness and damoing depend. It represents, in effect, the ratio of thse
direct stiffness of a length b/m of unit width of a face plate to the
real part of the shear stifiness of the same length and width of the core.
Subsztituting Equation 5.28 into Equation 5.23 and separating the 1le’t hand
side into real and iraginary parts, it is found that

2 2
R o= ify . 30em) s+ £?) ore(5.30)
fAn 4{ + ('4_\%“‘)2 N ﬁﬁ
F Yo 2 (1 +2)° eeo{5.32)

on (‘ "‘*’m * Fz * 3(“’{) e *mn'b Fz)
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This expression for t:e lcss factor is of the seme form us that derived by
Ross, Kerwin and Dyer (26), with 1/\¥mg,; equivaleni to their "sheer
parameter®. However, the factor (X2 + 1)/(1 -~ ¥ <) included in m
copverts their “beam™ shear parameter to a two-dimensionel finite plste
sheer perameter. Detailed consideration of Rp, and ¥py will e given
later.

V.2.4 The Surface Bending Stresses in the Sandwich Plate

The total direct stress at the outer surface of one of the face-plates
consists of the sum of the mid-surface stress, o or G,q s together with
the bending stress, gy, or @, , due to tke I%%e—plate gending about
its own neutral plane, At the outer surface of the top plate the bending
stress in the x direction is

Eh, [ 3w D
o —_— Ll = sy —
bx 2 {1~v?) {sz oy?

]

0 @ 22 2 . . v
= ZE -._g_}_!_'_. _Tir_n_ Ver i\ sin UL IPYT J
2(6-v*) b* ma 2 b

Nzt N2t

At the mid-surface of the top plate

q' — E { 2“9 a » av(
p A1 - - -
(1~v%) { 2x oy

vhienh, from Bquations 5.16, 5.20 and 5.21 becomes

[- 4 b N 3
Z Eh Tm 2 (14+7) © L oTx o Ty
a - - 1 (\,+f) Woosinlll2 gin 202
P4 ] 2("\’1) bz {' +§mn} nn 4l b

mss fNist

Hence

O’x‘ + fbx =

ii__Eil,__ 1!'7-,..\2 (v*pz) - (147} W 2in OITX i Ty
20* b* R = b

mzi net

Notice that the stress o=, 4s not in phase with ¢, since ¥

is a complex quantity. ;{051 it is the amplitide of the Total stress whi2h

is of greatest importence, rather than its 4wo cozponents. If only one node
of vibration (the mbB) is being excited siznficantly, the amplitude of the
corresponding total stress becomes {using Zquation 5.28)
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N ‘c;afall = k
2
Eh¢ 1rzm2 (V ,‘.2) {2+ ‘Pnu\ ""t)’z & 52(‘2 +7T) %W PPRLLL ‘52')?-‘,—1-@
20-v9) bL * (trg )+ g° o2 b

oon(5-32) X

The amplitude of the surface siress in a solid plete ©of thickness 2h, ,
vibrating in the mode

W sin A% gi, Oy
ma a b

is

a gt 2 . .
Ehy T (y4¢?) W __ sin ARX 5in MITY

(1-v%) b? 3 b

e s

Hence,; given a sandwich plate having face plates of thicknmess and a solid
plete of thickness 2k, , each vibrating iz the same mode end with the saxe
amplitude of transversé rotion, the ratio of the amplitudes of the surfaice
stresses is given by

[}
. 2 2 247
o, o 1Fensuwidl _ .,l.{"z‘“"m"’ T + £2+T) % )

which is the modal Mstress ratio” reguired in certsin response eriteria.

V.3 The Dependence of the Plate Dynmanmic Properties on the Wevelensth Core
Thickness and Core Dempina Proverties

V.3.1 The Stiffness Ratio 2nd Flate Losg Factor

It has been shown ia section V.2.3 that K and ¢ depend upon
<, (’i and ¥ .y Variztion of the core sheBs modulus, ™G , changes
'-}'m see Equatiok 5.29), an incresse of G reducing « . elso
depends on the ratio of the plat: thicknes:s to the semi-wa%length
(b, .n/b) and on tte retio of the lateral to longitudinal wavelength, r . &
change of the value of vay therefore be interpreted as e change of G
or of the lateral or longi%‘&dinal wavelengths. From now on, the suffix
will be dropped for convenience.

priis}

14
mn

Pigures 28 and 29 show R and Y] plotted against \}' for three
different values of F » the valuse of X being chosen arbitrarily at 1.0.

The varietion of the stiffness ratio with the extreme vaiues of ’41
may be explained in the following wey:




As \}’ decreases, the c¢ore shear stiffness increaces relstive to the plate
direct stiffness and for a given tramsverse displecement the core shear streinm
is reduced. In the limit as ¥ ~> O the core shear strain vanishes and the
bending strain distribution scross a plate section corresponds with the two-~
dimensional equivalent of "plane sections remaining plane and normal to the
neutral surface®. (See Figure 30a). The neutrzl surface in th:s limiting case
is the mid~plane of the whole sandwich. This accounts for the upper asymptotic
behaviour of K o This upper value of ¥ may be derived very simply by
using for ths sandwich plate flexural rigidity the expression for

5 x second moment of area of unit width of both face~
(- vZ) plates about the mid-surface of the sandwick,

As  increases, the relative core shear stiffness decreases and for
a given transverse displacement the core shear stress is reduced. This is
accoapanied by a reduced direct stress in the mid-plene of the face-pletes.
In the limit as ¥ ~» o , the core shear stress vanishes eltogether and so
2lso do the mid-plane stresses end direct displacements (u 2nd v) in the
face-plates. The two face-pletes may then be said to be bending "independently
by the sawe zmount®, each plate bending ebout its own mid-plane as the neutral
surface. (See Figure 30b). The flexural rigidity of the sandwich plate is
now equzal to the sum of the flexural rl.gidities of the two face-plates dn their
own, and the lower asymptotic value of W rnay be calculated on this basis.

The explanation may be presented in an 2lterrstive form using a simple
spring~damper analogue model of the plate. The plate flexural stiffpess
derived from the two parallel systems:

()  The low flexural stiffness of eesch plate about its own mid-place
neutral surface, involving no mid-plene strzin in the plates.

(b) The high flexural stiffness of both plates about the sandwich
mid-plare surface, involving mid-plane strains in the plates.

The two systems are coupled by the complex shear stiffness of the cors. The
analogue of the system is shown in Figure 30c, in which Xk repesents the
total stiffness of (a) above, kyrepresents (b) and X (3% ip) represeats tte
copplex stiflness of the core. Tre displacement of poiﬁt X represenis W__

and that of point Y represents U__ or Y__ . Nov en increase of ¢ is '
represented by an increase of kcm.1 With %ry high k_ , therefore,

(x> k.b) the total stiffness at point X is pearly equal to k_ + k. .

wish very lovw kc s the totel stiffness hardly exceeds ka ¢ a o

e

This simple anslogue shcws that the true nature of the mechenisa of the
. plate stiffness and damping centres on the coupling of one stiff system with
another flexible system by means of an elementary spring damper unit. The zass
at X regresents the transverse inertie of the plate, whereas a mass at Y
m2y be included to represent the (omitted) longiivdinal ipertia of ‘he plates.

¥

Turning now to the loss factor s Figure 31 shows that it increasds
in direct proportion to low values of ; tut in inverse proportion to high
values of ¢ . Meximum values of ¥ occur in the range of ¥ =5 %08 .
Plotting ® and !gagainst ¥ for other values of X , similar sets of
curves are obtained, but vz has different maximm valves ocewrring at
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different values of ¥ . Differentiating equation 5.31 with respect to }
shows that the maxima occur when

’ '
.{, = {1 + 3(:.ut)2)/2(14-p2),i = ‘faﬁ_? oo (5.34)
and the corresponding maximum values of the plate loss factors are
B.3 (1+7¥
2(\?0#--1“) + 3(a7)®
Figure 31 shows these values of “pax plotted against the thicxness ratio ¥.

Within the practical range of X , Qmax Iincreases with increasivg T .
At very high values of T , Y max &pproaches the value of f .

-a2(5.35)

T =

To explein the manner in which ¥ varies with 4’ s it is corvepient to
use the fact that the plate loss facicr is proportional to the cyclic energy
dissipation divided by the maximum amourt of potential energy stored in the
course of ope cycle. (There are certain problems of interpretation of
"maximum potential enmergy" when the- strains in the face-pletes are not all in
poase with one another, but the general argument that follows is unaffected by
this). At high values of ¥ , vhen the two plates bend almost independently,
the shear strain is almost equl to

[3 + _}-'-‘ ]2:! = 5

h; 3X
(from equations 5.2 and 5.3) and is glmost independent of the low core stiffpess.
The exergy stored in the core is porportional to G 52 » so that increasing
G(decreasing ¥ ) is accommnied by a proportiopate increase in the epergy
stored in the core, but by a negligible change in the face-plate energy and
total energy stored. Since the core emergy dissipated is proportional to the
core energy stored, it follows that as ¥ decreases, increases in
inverse proportion to ¥ . On the other hand, at low values of ¥ when
the shear strain in the core is very smll, the shear stress is almost
independent of G and equal to that predicted by the plate theory from which
shear deformation effects h%ve been ignored. Sirce the core potential energy
is proporticnal to (stress)</G , the cyclic dissipation is rsely
proportionel to G and directly proportional %0 ‘¥ . Thé meximum loss
factor occurs in the "transition region®™ betwsen the two extreme forms of plate
bendirg. With very deep cores, the contribution of the face-plates io %ze total
plate epergy in this transition region is very smell. The total plate energy
is nearly equal to the core energy, and the plate loss factor is therefore
nearly equal to the core loss fsctor.

V.3.2 The Harmenic Displecerent Sriterion, and the Random Surtace Stress end

Reaction Forece Criteria

The expressions for these criteria are, respectively,
2 4 2ot -3 4+ 3, 2
Re R“'vz%e*o( Bl & R¥e“q sy )2 AT
in which the stiffness zatio Rpn, , of Equafion 5.30 is to be used. The

&) N
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mass ratio, 0 , is the ratio of the mass per unit area of the sandwich nlate
to that of a solid plate of thickness .2b; and depends on the plate and
demping layer densities. Materials which could be used for damped sandwich
cores have densities in the region of 40% of aluminium elloy plates. The
mass of a plate having a core of thickness %iy between face-plates of
thickness hj is then (1 + 0.20%) times that of a solid plate of thickness
2h; . A mass ratio of (1 + 0.20%) is therefore used.

Plotting these criteria against \lr , sets of curves are obtained
similar to those of Figure 29. Each curve displays the cheracteristic maximum
and characteristic asymptotic behaviour at high and low values of { .

The harmonic displaceirent criterion,

. 2
Kq = p¢4301+7)
‘4-[(\4'{')2' + pzj
{frou.¥®auations 5.30 and 5.31) has a maximum value of

2
(Rq) = £3(1eT) ‘ - (5.36)
8{‘ + (!4—92)/3]
at the value of W given by
2\Z )
Yoy .= 1+ 6 ) cea(5.37)

It mey be noted Qere that as F gets very large, R‘? max approazhzs the
value £(1 + T )< which is the maxizum possible value cbtainable for 2
given T , assuming that a material is availablg having the required value
of G and the high value of £ . Iff= 4, the value of (Ry ), is
80% of its maximum possible value.

Maximum valnes of the randor stresc and reaction force criteria ere
not readily obtained in the --- way, owing to unwieldy aigebre iavolved
in the differentiation. lnstead, it is sufficiently accureste to assume that
the meximm values occur at the value of ¢ corresponding to the inter-
section of the high- ¢ and low- asymptotes cf the criteria. (This
technique actually gives the exact values of ‘Po ¢ for and !(v( .
See Section V.6 for the derivation of the equationg of the asymptotes).
Using this approach, it is found that the maximum values of the raném siress
criterion occur when

EX -L 2
\{,0?*—.5 = GV (1+30e7F)% (247) +e.(5.38)

and the maximim values of the random reaction force criterion occur whea

. 3
’"}'oez_«; = (P (143047)* eae(5.39)

e 2.4
Figure 32 shows \}'opt ( 1+ B7)7™ for the different criteria (from Equetions
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5.34, 5.37, 5.38 and 5.39) plotted against * , and shows & widely diverging
requirement for the optimun vaiue of « as X increases. 1. the core properties
are such a to give the maximum value to one of the criteria, another

criterion will not have its maximum value. &lthough at low values of 2

the valuesof ot are nearly constant, it must be remembered that since \}'

is proportional t8F" T (Equation 5.29), the value of G to maximize the

criteria mst decrease as T decreases.

The maximized velues of ¥w and the random stress and reaction force
criteria are shown by the Yincreasing weight® curves of Figures 33 to 35. Here
it has been considered that as the core depth increases, the weight of the
whole sandwich plate increases, fhe face-plate thickness remaining constant.

4s the core thickness decreases, each of the maximized criteria evidently
approach constant values. As the core thickness increases, the random stress
criterion and R increase monotonically. The yandom reaction force
criterion increases with dincreasing ¥ over the range indicated, but at higher
values of T it reaches a maximum and then decreases. These curves indicate
that if weight is no problem, the minimum response is obtained with the
thickest core and with the material having the highest loss factor, A . High
material loss factors, however, are usually only obtained at the expense of
some other desirable property, e.g. a wide range of temperature and frequency
over wnich the high values arz meintained. Further, the material with the
highest loss factor may not have the nhigh value of G required to gice the
optimum value of ¥ in the high T range, where the criteria have their
highest values. It is possible, therefore, that 2 material with a low loss
factor and high G may give greater criterion values at high * +han a material
with a high loss factor but with a lower G , if the latter material is being
used under non-optimum conditions.

The Cptimum Design of Demped Serdyich Plates

V.4

V.4el The 'Constant Weirht' Theory

In section V.3,it was assumed that as T dincreased, the face-plate
thickness remained constant and the total weight of the plate therefore
increzsed. The problem facing the designsr of an aeroplane plate structure
which gmst withstand intense random pressure fluctuations may pe formilated

thus=

For “a given weight of plate, obtain the configuration which has the
minimum random stresses, consistent with a satisfactery siatic stiffness®.

If damped senditich plates are to be considered here, the apprnach must
therefore be to consider the variation of the response criferie as T
increases at the same time as 1 decreases to maintain a cornstant total
weight. Decreasing the face-plate thickness implies a réduction of the
fiexural stiffness of the whole plate and in considering now the variatiom of
the eriteria with ¥ , the stiffness ratio 4o be used must include this
effect. Suppose the weight of the whole sandwich plate is to be egual to
that of a solid plate of thickness & and density + ¥hen the thickness
of each of the face-plates is hl and of the core ’fhg s the weight

[ " T Y

P T




A Sy

per unit area of the plate is

i

F"th' + Q/DP h‘ FPL.
Hence 'h‘ = h/2
(h+p /2129)

The stiffness ratio to be used in the criteria for comparing plates of equal
weight and different X Is given oy

eee(5.40)

Flexural stiffness of the sandwich olate
Flexural stiffness of the solid plate of equal weight

which is readily shown to be equal +to

Ronn - wee(5.42)
(1 + Tp. [2p, P Ko

The stress ratio, ol , must also be modified for the same reason. The new
stress ratio to be uséa is given by:

Surface bending stress in the sandwich plate «+ Surface bending stress
in the solid plate of equal weight, undergoing the same transverse displacement.

This is easily seen %o be Lan oL, ees(5.42)
W
(T < [260)
The criteria derived in the last section must thersfore be divided by

( - "CP‘ /pr)3x4742

%, ¥y and z are the powers to which the stiffness ratio, the stress ratio
and the mass ratio, respectively, are raised in the criteria. Note that 4his
has the effect of removing the mass ratio from the criteria since
9=+ 'tfc/z {fy) - Since tkhis divisor does not contain % or B , the
values of s at B ich the 'constant weighit' criteria pass through their
meximun values (for a given T ) are the sawe es derived in the last section.
The corresponding taximua velues of the constant weight criteria (wi‘bh

= 0.4) are shown by the "Constant Weighi® curves of Figures 33,
34 35? The plate loss factor, M| » is unaffected by the decreasing

skin thickness, being dependent only upon the thickness ratio T , and the
perameters ¢ and 3 .

Each of the constant weight criteria differ megligibly from the
increasing weight criteria at low values of T , since the face~plate
thicknesses scarcely differ. At nigher walues of X , the constant weight
randoxn stress and hermonic displecement criteria are less than the correspornding
increasing weight criteria, due to the reduced vzlues of R ., These criteria
pass through maximum values when T is aporoximately 5 and 8 respectively. Oa
the other hand, the rardom reaction forre criterion, having ¥ raised %o a
negative power, benefiis from the reduction of the stiffness associated with the
decreasing face-plate thickness. The constant weight criterion vziues are
therefore greater than the increasing weight values, and, moreover, do not pasc
through a maximm as ‘¥  ineresses. From the point of view of this
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eriterior alone, it is beneficidl to bave 7  as large as possible.

Since the gtiffness of the plate may well be of equal importance to the
dynamic resoonse characteristics embodied in t.ho above criteria, the volues
of the stiffness ratio R /{1 + 'CPQ/2P )2 corresponding to the rmaximam
values of the criteria are plotied in Figire P36. These show that below a core
thickness ratio of 1, the stiffness of a sandwich plate designed o maximize any
of the criteria is less than the stiffness of a solid plate of equal weight.
At low frequencies, or under static loading corditions, the stiffness of these
modes of displacement (on which ihe buckling stress depends) will be considerzbly
less than indicated by Figure 30, since the frequency deperdent shear modulus
of the core, G , is always much less at low frequencies thzn at high frequencies.
Indeed, if the low static value of G gives a high enough walue of
the static stiffness ratio for the plate with & very thin core Heccmes 3 (from
Equations 5.30 and 5.41) while for the plate with * =5 it becuxcs 1/32.
It is evident, therefore, that the minirmm dynamic response of the sanduich
plate can only be obtained at the exvense of the static stiffness if no irerease
of weight is permitted.

V.4.2 The Constant Stiffpess Theory

If the plate must withstand appreciabile static loads in addition to the
fluctuating loads, a certzin minimm static stiffness is automatically
specified by the known static loading and the degree of transverse deflection
or buckling permitted in the plate. Suppose that this static stiffness is to
be maintained as the core thiclkmesses is varied and the response criteria are
examined.

Now under static {or low frequency) loading conditions, the shear
Tcduli of damping materials are usudlly very smgll, and creep readily occcurs.
Under these coaditions, therefure, \{r is 1dkely to be very bhigh and
Tguation S. 30 shous that the stiffness fatio NK_ dis virtually independent
of T, and B , approaching the value % . The static stiffness then
depends only upon the thickness of the face-plates, and is twice the fiexural

sviffrness of one of the face-plates. TIn order to meintain a constant vdlue
of the static stiffness, therefore, it is necessary only to maintain a constant
thickness of the Tace plates. The total thickness of the face-plates will be
43 times the thickness of the solid plate naving the required static stiffness.

Maximized criterion values for sumdwich plates haviug face-plates of
congtant thickness are shown by the Tincreasing weight® eurves of Figures 33,
34 and 35. These have been discussed in Section V¥.3.2, the theory of which mayv
be regarded as the "Constant Static Stiffness Theory™. The conclusicns Teached
relate to the optimm design of plates for 2 given static stiffness.

V.,L.3 The Choice of the Outimmm Core Materiz1 (Constaxi Height Theory)

1T a demped sandwich plate is to be uscd for the skin plating of an

zeroplane structure, and is to be designed for minimmum random stresses and/or

reaction fore=s, it will be mecessary in the first place to know the mode {or

modes) which are likely to contribute moci significantly to the toidl response.

This is necessary since the plate dynamic properties depend on the modal wave~

length. Clarksun -snd Ford (), have found from tests on jet—excited aerorplene

fuselages and tail surfacus that the significznt modes are those in whick ;
adjacent panels of stiffened plate stzuctures vibrate in snti-phase, the gemi-~ t




wavelength (b/m) being approximately equal to the stringer or rib pitch. Modes
with effertive semi-wavelengths of one half of this may also be important. The
semi-wavelength in the other direction (a/n) is of the order of the spacing

of the stiffenirg in that direction. The valuss of r and (}/m) required in
the sandwich plate theory may therefore b deierrined. How the mode of
vibration of the stiffened plate, with adjecent panels vibrating in anti-phese,
is not the pure sinusoidal mode assumed in the faregeing theory, due to the
restraint offered by the stiffeners. The effect of this is discussed briefly
in seelior V.5, but the optimw: core properties should nut be appreciably
different from those required for the sirusoidal mode.

Suppose that the muss per unit area of “the plate has been fixed at M
by purely weight considerat!ons. Miniimn raniom stresses ars ohtained when %
is approximately 5 , so that the face-plate thiskuess by must be s /4 P
assuming that ~ po/pp, = 0.40. It has alresdy boen shown that Woop.rg 40
considerably different from WP t.ef » S0 that some compromise is necessary
if' both rindom stresses and reaction forees are to be m2d= as smal: as
possible. As a compromise, therefore, the valee of 4 opt ¥ill be taken to
be the geometric mean of these two quantities, i.e.

(e @’)’ﬁ {i + 3( -:-’{')2}#(24"&') eee(5.42)

With X =5, this becomes ¢ opt. = 22,6 \1 + pz)% « The corresponding
expression for the stiffness ratid is then

L 458
R = z{l + m} oee(5.44)

Now suitable materials csn usually be mamuf4ctured with B = 1 , whence
K =1.06 and 'l"cprt = 32. From Equations 5.29, therefore,

G

]

(£%51) _1_57' £ (5. )21;

(W) 2 ¥ \bjm

2
o7 L+ E b ) eee(5.145)
G- \bjrf

The core material must possess this value of & st the resonant freguency

of the mwode. When the plate modes are coupled with tbe stiffener torsi-n and
berding modes, this freguency sust be found by the method of Lin (2),.(see also
Clarkson (4)) adapted for sandwrch plates. &s a first approximation, however,
the plate flexural stiffness could be faken to be ® D, where ¥ has the
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value deduced above, and Lin's method for solid plates could be tsed. If
there is negligible coupling with the stiffeners (a very extreme case) ths
resonant frequency will be given by

1}

\2,

= (jﬁ;gli:ﬂ) (from Equation 5.24)
»

which, with WK . =1.06 gives

-+
n

£h i (c241)
1+33 \’l (‘ _v-;) ) (b/m)‘z

V.le/, The Optimum Desien of a 6 in. Sgusre Plate with Given Core Materizls

We now consider the apolication of the constant
weight theory to the design of a simply supvorted 6 in. square sandwich plate,
the totel weight *f which rust be equal to that of a single 18 S.%.G. {0.048 in.)
plate. This is representative of a skin panel on the tail-plane of a certaia
jet-transport aseroplane. The use of two different damping materials is to b:
investigated, and the optimum core and face-nlate thicknesses determined. The
two different materials to be used are

{£) a broad temperature band materizl developed for sanlwich plates
(B) a soft, pressure sensiiive material, as used for damping tapes .

We shall consider the response criteria at one temperature only (10°C), at which
the materiels have the following properties:-

Frequency (c.p.s) 100 200 400 600 1000

Material Aé G L6400 6820 9900 11900 15400
(ib.in™<)

IS 0.96 0.87 0.80 0.76 0.68

Material B:
(1b.in™2) ¢ 180 260 380 480

F 1.20 1.23 1.20 1.17 1.10

660

The specific gravity of "the two meterials has been taken tovbe 1.0 and of the
face plates, 2.80. The Young’s Modulus of the plates is 10° 1bu. in=? and
Poisson's Ratio, v , is C.3. The fundarental mode of vibration only is to be
censidered. Velues of the stiffness ratio and the plate loss factor have teen
computed for a range of values of X , the face plate thickness varyirg with T
to mzintain constent weight. The calculestion necessarily involves a 12 thod of
successive avnproximation, for at each value of % the natural freguency of the
plate is initially unknown. A frejuency is therefore guessed, and the corresponding
values of G and B are used to caleulate R ., With this values, the
resonant freyuency is estimated and then used to find improved values of G and
£ and then an improved value of R. This process is continued until it
converges on a steady value of K . Values of VI “Y , and the random
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recetion foree and rardom surface stress criteria are then calculeted. These
values ar¢ shown in ¥igures 37 and 38.

Bach ¢f the criteria increases witn increasing X until < lies
betuzon 5 end 10. Here, the criteria approach or reach maximum values. Plate
B lz supexior criterion values throughout since the values of ¢  are much
clossr to the optimum values than those of plate A . PFurthermore, the loss
factor of material B 1is consistently greater than that of materizl A . For
plate #4;¥reaches a maximum value of about 0.24 at € = 6.0 as T increases.
This value is about one seventieth of the value required to maximize ® .
On the other hand for plate B, < reaches a maximum of about 11 at

¥ = 6.0, which iz about one half of '{z opteq *

.The existence of the maximum velues of the c¢riteria in the region

= 5 to 10 stems rainly from the effect of the decreasing face-~plate
t‘zicm,,s s, as 7T dincreases. Equation 5.29 shows that W is proportional to
h T /G, where b, is the thickness of the face~plates. Putting

h
hy = N2
1+ 7 fe /2[:?)

(as in section V.4.1) it is found that h,°T  has its mexirum value when
T =2p /P o 1i.e. 5.50 in the above Case. Although G =2lso changes with
% ( due’to $he change of natural frequency), this was a small effect in the

above calculation and Y still passed through a maximun value close to

T =5,50. Now the ejuation for the low- \{' asymptote for (see s=’ct10

V.5) shous that when \P is much below the opiizum value end is ater

than, say, 1.0, then the plate loss fector is almost independent of <

and is propcrtional to ¢ . Under these conditions, \? passes through a

maximum as \{/ passes through a rexicum.

though material A does not appear in the above example to be as
effective as material B , at a shorter modal wavelength or withk a greater
total weight Lt87eff°ct1V93°So will izprove. Also, if steel face-plates are
used (E =2 x 10" 1b. in.™ ) with material A , the value of ¥ will be
further increased and will come closer to the optimum value, giving increased
effectiveness. With these seme changes, the plate with material B will
have a value of \} considerably greater than the optimum value, and the
effectiveness of material B will decrease. It is evident, therefore, that

each material must be exemined on its werits in conjunction with the configwration

in wnich it is to be used, and vonsidering also the frequency of operziion.

V.5 Stress ond Beaction Force Reductiong Obtzinshle Using Damvped
Samiwich Plates

L comparison is now made between the random surface stresses and the
random reaction forces in two similar plates, one of them being a damped
sendwick plate and the other being a solid plate dampsd only by the 'extrcneous!
mechanisms of rivet, acoustic and meterial dampirg. The plates are subjecied
to a random loading whicfx is assumed to excile significently only one mode,
the same mode for each plats. The power spectral demsity of the corresp ndmg
gensrelised force is assumed to be the same 2t the natural Trequency of each
plate and is assumed not to vary appreciably 4n the neighbourhood of tkesz
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frequencles.

The percentage reduction of the stress and resction force will be found
using the eriterion va.ues in conjunction with My » 88 deseribed in
Chapter III, section II1.5. The values of V. used in Chapter IV, section
IV./ will again be used. Taking = 0.025 In conjunction with the
maximized lcw ~ ¥ criteria values }rom Figures 34 and 35 with ﬁ = 1.0, it is
found that the random surface stresses are reduced by 65% and the random
reaction forces by 73% when the solid plete is replaced by a damped sandwich
plate of equal weight and of optimum design. Taking ‘{% = 0.01 in conjunction
vith maximized criteria values at 7% =5 end f#= 1.0, tHe reductions becone
90% and 92% for the "constant weight®™ condition, and 96% and 88% for the
"increasing weight™ condition.

It should be remenvbercd that the muximum reduction of the random stress
does not occur at the same value of \ (or G) as the maximm reduction of random
reaction force, i.e. the maximum reductions will not be obtained at the same
temperature or frequency. If the plate is designed such that the value of \}'
is between the optimum velues for the random stress and reaction force criteria,
the values of the criteria themselves may be reduced by no more than abou® 20%,
and the reduction quoted above will be slightly less.

When a sandwich plate is incorporated in a real structure with siringers
and frames, thess flexible stifiening members will cause the stiffness ratio
and loss fzetor of the whole structural mode to be different from those of a
simply-supported plste vibrating in a sinusocidal mode. The overall loss factor
is likely to be less than that of the simple sandwich plate. The stiffness
ratio is likely to be greater than R of Eguation 5.30 if this is
less than unity, and less than R if this is greater tkan waity. JSince the
mode of plate vibration is no longer sinusoidai, it is probable that an
iterative techaique will be reguired to determine the actual mode of vibraticn
in the first place, before the values of R and 9 for the whole vibratiug
configuration can be determined. This is to be the subject of future work.

If more than ore mode particip.’es in the tetal rotion, it will not be
possible to minimize the response in more than ons mode. BHowever, it is
possible tnat if two modes adjaceni in the frequency spectrum are excited,
the values of their response criteria coulé Jie on either side of the peak of
the criterion: ¥ ciwve. Both values could then be close to the maximum and
the total response arisirg from both medes could then be minimised.

V.6 Off-Peak Values of the Criteriss Temperature Bandwidth Factors

Mention has already been made of the asvmptotes which the criteria values
approach as W becomes very lerge or very small. Figure 24 (aud similar
curves for other ecriteria) show that these asymptotes give good approxiretions
to the actual criterion values provided Y is asbout ten times greater than
the optimum value, or less then one tenth of it. Now in a multi-modal response
calculation, the loss factor and flexural stiffness (and also some of the

‘response criteria) corresponding to several different modes will be required.

No more than one or two low-order modes can have criteria valves cleose to the
paximum. The loss factors and stiffness ratiocs for the remaining modes could
be taxen tc be those given by the relevant asymphote.
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Equations 5.30, 5.31 and 5.33 show thet at low Pelues of

9 i
2

R->  +3(1+%)

.-+ (5.45)
JB 3¢+ %)

- . >
1 t+p | 43014y

~x
1 + =
d - 7

At high values of

K >

M-

k B £3(!+T)2 g eee(5.L7)

J 9 .é— i

-

Fror these expressions, equations for the criterion asymptotes mey be obtiained.
Kote that at low values of ¢ , the greatest loss factor is obtained when

B =1 but at high values of »® increases in proportion to B . FKote,
further, that there will be 2 lower limit to the value of Q » set oy the
existence of hysteretic damping in the face plaies and at the plste boundary
attachrents. The effect of these damping sources has not veen included in the
analysis of this chapter. The avove values of ¥} are therefore only of use
if they are considerably greater than the value deriving from these other
sources.

Off-peak values of the criteria have also to be considered in relation
to the sensilivily of the plate rezponse to chenges of temperature. Suppose,
in the first place, that the plate vitrates in a single mode, at ithe fresuency
and temperature at which \ has the optimum value for a specified eritericn.
Variation of the temperature changes G and 8 and hence changes . The
criterion value changes, fcllowing a curve similar o that of Figure 2i.
Sufficient change of temperature, up or down, will bring the criterion vuiue
dem to one haif of the maximum value at s{/o . HNow in order to find tke
exact range of temperature over which a partic?a_"‘lar configuration with a
particular core material bus criterion values greater than the half-peak values,

—-- - . e e e — —_—— ——




it is necessary to have a complete set of curves of G and £ vs. frequency
and temperature for the mteriel. Ia the paragraphs which follew, the temperature
bendwidth iz investigated in qualitative terms without such information for a
range of configurations (different values of T ), optimised according to
differsnt criteria. Instead of an actual tempersture bandwidth being found

(no specific core material being considered) an slternative "bendwidth factor®
bas been postulated, and its dependence on 4 and f3 has been investigated.
Despite its limitations, this work is sufficient to show that some configuraticns
must have a markedly superior temperature bandwidth than others.

Supoose, firstly, that B does mot change as G changes. Denote

by ¢, and §, the values of ¥ corresponding to the half-pesk eriterion
values. “"u and «y, are the upper and lower values respectively, . How
the quotient /¥, (or "bandwidth factor”) is also the guoifent or the #wo
values of G giving the half-peak criterion values. Using the relevant curves
of G vs. temperature, such as Figure 11, this quotient can be interpreted as
a temperature bandwidth. Clearly, therefore, the greater the value of

./, » the greater is the actual temperature bandwidth between which the

criterion values exceed the h2lf-peak values.

Exact expressions for ¢ corresponding to the plate loss factor,
, car be cbtained from Equation:5.31 by equating this to 9 - 2 from
Bquatior 5.35, znd solving the guadratic equation for \f' . We tFed fird

2
) +ﬁ-— ___+°"b"l - 2

\{JL ] 1 _/‘ — ‘*’:ﬁ-q 5 2
[Z‘f'opmz + 3 (147) -H]

where ‘?ipf n =11+ ﬁz)(l +3(1 ""t')z)-
Similarly, for the criterion RY , we f£ind

1+ [1— —L+ =M
[&‘] _ [2¥opnuq +1] cer(5.49)

27 e j —/| = _Yost.ug .
[Qq’oﬁz.ibl irl}

Zxact expressions for ¥ /¥, for the other criteria are not obtainazble in the
same way, owing to the unwieldy algebrz involved. However, from curves of the
criteria plotted against ¥  for different velues of % and ﬁ , the
bandwidth factors may be determined graphically.

Figures 39 and 40 show the bandwidth factors for four different criterisa
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plotted against the core thickness ratic for three differen{ (constent)values

of B . The curves for and the random reaction force criterion show
that there is a definite advantege in having large core thicknesses, as the
bandwidth factors increase ccnsiderably with thickness. The bandwidih factor
for ttv( is insengitive to core thickness, and that for the random stress
criterion tends to be slightly less at high core thicknesses then 2t low. In
general, the effect of having higher core loss factors is to reduce the bandwidth
factor.

Considering now the effect of a change of both loss factor, B ,
and G , it will be shown thet the conclusions just drawn are still vaiid. We
may supoose that G changes first ( f remaining constant and egual to B 52
gay) followed by the change of B (G remaining constent). If the conbined effect
is to bring the criterion down to the half-peak value, the corresrondiig values
of \(/ will differ from those above., Denote the new values by

¥ £ corresponding to which are the new values of the core lmss f3etor

. We shall now assume that ir the region ¢ to . , and 1{;‘
r,o , the criterioh asympiotes are sufficiently close to the actual curves
to permt deductions to bemade from them with regard to the bandwidth factors.
Under this assumption, the harmgnic and random criteria in the region of
ere proportional to 7 and \-l respectively. i.e. to

éa(n-a—a:)z % {%3(:«»?)2}%

E 34

For either of these to have the same (half-peak) values at < gnd ﬂ
as at ¢ and /3 ;4 (= the initial value of f8 at ¢ opt)’ 2 must have

é; = Eﬂ i e, e = ‘l’ /3“
Y. $in t B

Similarly, in the region of gP , the harmonic and random criteria are
proporiional to 2

%
‘{' _..'?__. and { \Pg } respectively.
L+ F’“ b+ gt

For either of these to have the same (half-peek) velues at ¥ ¢p end ﬁz
as et \(« and /81, ve must have
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Hence _\‘:‘:“ - f‘_" B“‘Bf' e B ) e..(5.50)
2 2
Ya Bl B0 (1 rE)
This differs from ‘l” by a factor which deoends only upon the B ‘'s and
not upon T . Th. pew bandxn.dth factor, must therefore
vary with *  in the same meaner as the prev:.ou., fac%cr . The

deduction 2lready made with regard to the effect of ‘¥ on bandwidth
factor is thereforz still valid, within the limits of the validity of the
assumptions of the argument.

It muist be remembered that as G and ﬁ change with temperature
so also does the stiffness retio ¥, and the resounant frequensy of the mode.
This frzquency change causes a further change of G and B8 . However, ihe
eff-ct of thison G and A (and hence also on the Tresponse criteria) is
eortainly much 2ess than the effect of temperature alone.

v.7 Conciusions Drawm from Chapter ¥

The theory of the response of two-dimensional flat plates with
dazped cores has been developzd. The resuits re-emphasize the conclusions of
Ross, Kerwin and Dyer (24) who sacwed in a one-dimensional anajlysis that the
loss factors of the transverse modes of vibraztion depend on the medal wave-
length and core thickness, as well as on the core dynamic properties. The
other eriteria upon which the plate response depends have bee Ffound in this
paper to shew a similar dependence.

For any #iven mode and core thickness, there exists an optimur core shear
stiffness to maximize the loss factor of the rode, but different optimum
stiffnesses ars required to minimize different response quantities (e.g. random
surface beniing stresses, harmonic resonant Aap_acement amplitudes, etc.).
¥ith very thin cores having a2 material loss factor of 1 , the rmexirum modal
loss factor is zbout C.3 Tut this is obtaincdat the expense of the high
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frequency stiffness of the plate which is then about one half of that of 2
solid plate of equal weight. The static (i.e. low frequency)stiffness of the
sandwich plate is about one guarter of that of the solid plate, owing to the
shear modulus of the core being low wader static or low frequency loeding
conditions. With thick cores %core thickness five times that of tne face-plate)
having a material loss factor of 1, maximum plate loss factors of abeut 0.8

can be achieved. With a given face-plate thickness, the minimum plate

response is obtained with the thickest optimized core. .

Comparisons have been made between the random responses of vlates of
equal weights vibrating in the same (single) mode, but having different core
thickness: fezce-plate thickness ratios. The rinimum response occurs when this
ratio is about 5 : 1. The high frequency stiffness of the plate, in the given
mode, is then nearly equal to that of the solid plate of equal weiznt, but the
static stiffness may be as low as 1/32 nd of that of the solid plate. Although
it appears that maximum demping and minimum response can »nly be obtained at
the expense of statiec stiffness, a satisfactory stetic stiffness might be
obtainable if lower damping could be accepted and non-optimum core shear stiff--
nesses were used.

With the large core thicknesses under optimum conditions, a rough
estimate suggests that the r.m.s. stresses and reaction forces in a randonly
excited sandwich plate may be about 10% of those in a soiid plate of egual
weight. With the small core thicknesses this figwre becomes 30 - 407 .

The sensitivity of the minimized plate response to changes of the core
dynamic properties (and hence to changes of teoperature) has been investizated.
Rendom reaction forces and the plate logss factor are less sensitive to these
changes when the core thickness is high than when it is low. Earmunic
resonant displacements and rapndom surface stresses are egually sensitive,
or nearly so, at high and low thicknesses.




Chapter VI

srnonic Experiments on Dam Sarndwich Specimen:

V1.1l Scope of Chapter VI

This chapter describes some expsriments carried out on a number of
different damped sandwich specimens to measure their modal loss factors and
stiffness ratios. Some of the specimens were commercial products which were to
be assessed and others were specially made in order to check systematically
certain aspects of the theory of Chapter V. This check was confined to an
examination of the variation of R and ¥ with respeet to both core
thickness and wavelength, for small core thicknesses only.

The measurements were made with the specimens vibrating in different
sinusoidel modes over a wide frequency range. Ensuring that the modes were
sinusoidal presented problems in the design of the apperatus. The heavy
damping encountered with some of the strips presented problems of measuremsnt
noi hitherto encountered. These problems are discussed and their solutions are
described,

It has been concluded (with some qualification) that the resulis of the
tsystematic check! confirm the theory of Chapter V relating to plate loss
factors and stiffness ratios.

As the commercial specimens were all of different thicimess and w2ight,
there was little point in assessing and comparing them directly. A more us=ful
comparison may be made betieen specimens of egqual weight, it being assumed that
the specimens can be manufactured in "scaled—up" or "scaled-dovn” forms. For
this purpose, it uas necessary {o deduce the loss factors and stiffness ratios
of the scaled specimens from the values measured on the specimens supplied.

4 relatively rapid method has been derived for this deduction process and is
described in a later section. ¥Finally, the scaled-up specimens are compared on
the basis of values of the reaction force criterion.

ViI.2 The Desisn of the Apparatus

The apraratus in which the sandwich specimen loss factors and stiffness
ratios were to be measured had t. satisfly the follomring requirements:

(2) The specimens had to be easily inserted and removed.

(v; The specimens had to vitrate in sine-modes. This was desirsbie
for the purposes of compariug one specimer with another, as
comparisons would have little meaning if the modes of ¥ibration
were different. It was necessary if the results were to be used in
conjunction witk the theory of Chapter V, eard if stiffness ratios
were to have any meaning.

(c) It had tc be possible to excite and measure modes of vibration having
freguencies as high as 1000 c.p.s. =nd 2s low as 50 c.peS.

Requirement {a) was most resdily satisfied by using narrow strips of the
sandwiches rather than two-dimensional plates which would need to be carefully
attached all round their four edges. Accordingly, specimens were tested which
were 0.30 in. wide, and abou® 11 in. loug. TFurther, to satisfy both (a) end
(b) the specimens had tc be effectively simply-supoorted at the ends and no massss
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could ba attached to the strip between these ends. This in%roduced problems

of exciti~r the vibraticn, the normal method of which is to add a light coil

to the stri, and to excite electro~dynamically, Iikewise, a problem of
measuring the vibration arose, as suitable non-contecting vibration transducers
were not available.

To provide effectively simple suponrts at the =nds, the specimens were
suspended frow the "eradles" illustrated :in Figure 41(a). These consisted of
two vertical shim steel strips (A), 0.002 in. thick, 0.10 in. wide and about
0.5 in. long. At the top of these was soldered the brass bridge piece (B) to
which the specimen was attached by a 10 B.A. screw (c). One of the specimen
face-plates was tapped to receive this screw. The mid-surface of the specimen
intersected the vertical strips half-way up their free length. In this way,
the vertical strips imposed the minimmm of rotationel restraint upon the
specimeu. A% their boltom ends, the vertical strips were soldered into brass
support rods which were tightly screwed into a heavy base of 3 in. by 3 in.
stecl. One of the supports incorporated a crystal force transducer (ses
later paragraph) and ceriain necessary insulated secticns. The whole assembly
was bolted on to a massive base-plate.

To excite the specimen without adding exciting coils, the metal face-
plates themselves were used as "exciting elemsn’s”. Permanent magnets bolted
to the steel base created a magnetic field whick cub across the specimen in
the direction perpendicular to the required directicn of vibration. An
a2lternating current was passed through the length of the specimen, gz a resuit
of which an oscillating loading acted@ on the speciuen and excited the vibration.
The permanent magnets could easily be moved and "reversed™ in order to change
the direction of the magnetic field. In this way it could be arrenged that
some regions of the specimen were excited in counter~phese with others, and
the excitation could be arranged to suit the particular mede of vibration
reguired. The alternating supply current entersd the spscimen via the
vertical support strios.

Measurement of the vibration was accomplished by incorporating a piesnc—
electric crystal in one of the end supports, (Figure 41b)and measuring its
voltage output as the oscillating load fyom the specimen was imposed upon it.
This oscillating load derived from the Zneriia Joading on the specimen and the
exciting loading. The two components had to be separated in order to measure
the required quantities. The technique nsed is explained later.

A photograph of the whole assembly is shown in Figure 42. Some of the
pole pieces have been removed from the permanent magnets for clarity.

¥I.3 [The Problems of Measuring the Stitfness Retios and Hish Modsl Toss
Factors

As soms of the specimens were very highly damped (modal loss factors
of nearly 1.0), ssveral problems arose in measuring the luss factors and
stiffness ratios. The stifiness ratio is defined (as in chapterV, section V.2.2)
as the ratio of the generalised stiffness of the sandwich plate vibrating in e
given mode to that of a2 so0lid plate of thickness 2 Vibrating in the sax=
mode. Its experimental determination is most readily achieved by measuring the
"displacement resonant frequency® (RK/¥8)F and deducing it from this.
sccurate ddentification of this freguency was therefore required.

High modal loss factors imply low responmse (imeriia forces) et resonsnce
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and the possibility of a large yroportion of the total respoiise st resonance
deriving from non-resonant modes. Further, the inertia forre ex:.-ted on the
support of the simply supported specimen by vibration in the rezoiant mede may
not greatly exce:d the force due to the excitation loadizg. These factors
completely prohibit the use of the simple 'frequency-responsu! curve meihod to
measure gither th~ loss factor or the rescnant frequency. However, the
Nyquist diagram technique of Kemnedy and Fancu (29) is well suited to the
problem and has been wudopted. The problem of the presence of unwanted modez f
vibration was further overcome by arranging the magnets of the exciting system
to produce the distribution of excitation loading which best suited the required
mode (sze Figure 43). Th> generalised ~iting forces in the unwanted modes
were then very small, if nct zsro.

The theory of the adaptation of the Kennedy and Pancu method to the
present problem is presented in section V... The in-phase and quafrature
components of the force transducer output (relative to the exciting force)
were plotted against one another t¢ form an arc of a circle in the region of the
resonunt frequency. Id=ally, the larger the arc of measured points, the greater
shonld be the accuracy with which the circle can be drawn. Now with a model
loss factor of nearly one, the two gusdrants on either side of the resonent
frequency cover a total frequency rangs of about 90% of the resonant frequency.
Over a range as wide as this (espscielly with resonant freguencies in the
500 c.p.s. region) the frejquency dependence of the core dynamic shear . dulus
might be expected to cause some variation of the modal stiffness and loss
factor. Arising frum this might be some dir tortion of the Wyauist diagram
from the nsual circular form and use of the distorfed d&iogram will result in
errors of estimating the resonant frequencr and the loss factor. In the
present investigation however this problem hos beer ignored, as the errors are
certainly quite small. Justification for ignoring ihe problem comes {rom %he
results of the random experiments to be described later. The random behaviour
was first predicted on the basis of the harmonically measured vzlues of stiffness
ratio and Joss factor, and satisfactory agreemont with vxperimental results
was obbained.

vI., The Theory of the Messurement of the Resonant Frecusncy -ama logs Fasior

The method of Kcanedy and Pancu for analysing vihration data centred
on the vectorial representation of the gisvlzcement of the harmonically
vibrating system. In the present work, the force exerted by the vibrating
system on itz support was measursd. Accordingly, we require an anslysis of
+this fores vector, in order to relate the model loss factor and resonznt
frequency to the propertizs of the force vector diapgram. (Sirce the forez
exerted on the support is equal and opgosite to the reaction at the support, from
now on We shall refer to *his force as “the reaction™).

Consider a besm pf %ength b which iz excited by the harmonically
varying loading p{y) e** v 3 y dis the lengthwise co-ordimste. pfy) is
entirely real, so0 all points are being excited in-vhase with, or in counler-
vhese with one another. Iei the transverse displacement of the beam at any point
be w(y) ei®t , where w(y) may be = complex guentity. Denciing the mass per
m&t'lengt}}_o the beam by p , the local harmonic ineviia loading is

w w(y)/\:el"’ 5 .giving the toiel loading at a point of

{?(y) + uﬂ.}& “'(])} e;ot
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The support reaction is now

SRR gt s

!{ ply) + wzin w(j)} Ay eee(6.1)

in which the limits (or constants) of integration mmst be adjusted according to
the becurdary conditions of the beam.

v AR et 4 NP,

We now expand w(y) as an infinite series of the normal modes f
H vibration of the beam, i.e.

wily) = ngﬁiyl

y
§
i The geperalised displacemert, W, =W, ei“’t , corresponding to the nth normal
} mede satisfies the generalised equatioa of motion
; b e
: oy . 1%
H M W, + K“(l + wl“) W, = g 45 ‘Fn(}') dy. e
]
5 lot
’f‘_\ o -Pn . el say.
1 From this we have
3
: Y 17
: W, = ——2 = Po e (6.2)
e (K- & M)+ 1K q, Z ()
ard the total support reaction is

IP@)A) * Z Ip& d’( ) et vee(6:3) B

R S DI s SO

The amplitude of the component of this which is in-phase with the exciting
loading is

R = j?(y)alj + Z Ift“‘ dj ? (:_(K M‘;:M;) . eee(6.2)

Likewise, the quadraturs compcnent amplitude is

9

= {4 "%_ w” nln ‘o5
Z j}" it (Ko oMY+ Ko -e(6:9)

n =1
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Considsr now the Argand diagram obteined by plottihg R against 4 for
different values of «w . The existence of the frequency independent term
p(y)dy 1in ths expression for R shows immediately that thure must bte a
'displaced origin® Sfrom which the frequency dependent components of the vectors
radiate, even if thereis only one significant term in the infinite series. The
total reaction vector consists, therefore, of a constant component deriving from
the externally applied loading together with the ‘frequency depsndent components
from the inertia forces.
T Following Kennédy and Pancu, we examine next the frequency-dependent
yector corresponding to just one of the mndes, the rth,say. Now it is known
that'if the stiffness ‘and damping do not wvary with frequency, then the tip of
the vector of the generaiised disvlacement

P, (K, ““‘lmr) -1 Kr”lf)
(e - N,)z + K: VI:. !

traces out a circle of diameter Pr/Kr"lr » With the centre on the imaginary
axis, &4t any,frequency, w , the amplitude of the corresponding inercia force
vector is ny'rdy | times this. The argument of the vector is unchanged. It
can easily be shown that the %ip of the inertia force vector still traces out

2 circle, but the axis of the circle (i.e. the diameter which passes through the
origin of the inertia force axes) is inclined to the imaginary axis by

tan"l’cl (see Figure 44) . 7T =2 diameter of the circle is

. 2w \uf
dv P (!*‘*l:')%wi I}L{cdj ’Pr = (“‘?f). Sr i ?‘_ ess{6.5)
Kr"(f T My

which is the maximum amplitude of the inertia force corresponding to the rth
mode, and occurs at the frequency

2
w?l = w‘_ (‘ + 1".) .oo(6o7)

W is the "displacement resonant frequency”, (K r/"ir)% .

Suppose it is possibie in a practical investigation to arrange the
loading, p(y) , such that the generalised forees in all but one preferred mode
(the =th) are small. In the neighbourhood of s the inerida forces from
all modes bub the rth will be very small. In this region the %ip of the total
measured reaction vector then traces out a circular are,and =z circle can be
dravn through the measured points.

For various practical reasons, the magnitude of Jp(y)dy will probably
not be known. As it is not possible in drawing the circle to rely upon
measured values of the reaction ab very low frejuencies, (dowm to zero), the
precise location of the origin O, will not be known. This means that nelther

of the fraquencies wr &ngd w._; can readily be identified from the circle

e s e e
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that bas been drawn. Kearedy and Pancu overcams their similar prodlem of
identifying W considering the derivative ds/d(02). (s = length of
arc, St° = (w/&-)%). This had a saximum value at W= w_ . The seme
property holds foF the reaction vector diagram. Denoting the lsagth of its

arc by 8, » we can show that

e S e

T oo

ds. _ p JpEy e (6.8)
AT Me (-7 2

g ar

which has a maximum value at £2 =1, i.e. at W _ . Inspection of this
expression, and practical experience, show that with ia.rge values of N
this derivative does not change sufficiently in the neighbourhood of w . o
permit an accurate identificatinn of the frequency wr + An alternative
rethod of determining w r is thérefore required.

The frequency which can be determined most accurately frem fhe vector
diagram is W, at which the imaginary component of the ipesrtia furce
vector of one mode has its maximum values The corresponding point in the circle
iies on the diamebter which is parallel to the imeginary axis; and is therefere
very easily logated. Differentisting the rth term of the series for §  with
respect %o w “ and equating the derivative to zerc shows that

1
234
Wy, = w. {1+ v) vee{£.9)

When v _ has been determined, ¢ _ is quickly found from W_ . ‘"t,,. can ]
be found'fram the vector diagram in several differen%: ways. Each of these 3
depends essentialiy on the relationship between W and the angle subtended
at the circle centre by certain pairs of points orn the circle. Consider first
the rate of change with respect to w  of the real part of the inertia force
vector at the frequency w " The real part of the vector is given by N

foy. Tt .
Ef = [r < y "':’ K"Ylf (from I‘:’O‘n. 601&) -..(6.10) %
z 2
(.= uw®M. ) + Ke e :
from which we find
[J.R‘.] _ Ir{fdy. P,‘..wm i
fiaite = -5
Aw 0200 Ke (i +¢zv)z -
Dividing this by the dlameter of the circle, d_, from equation 6.6 &4 using
6.9, we have 3
(4R /de , ;
| Rl 3,,,”;. - :l-f = ¥ (vzf} -ee(6.11)
z
de (e ) -4
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Now each of the terms comprising the left hand side sre very easily obtained
from the vector diagram, once a good circle has been drawn. Bvaluating tbe
left hand side using the measured data, the corresponding valus of r D&Y
be found from the further relationships

- 2":\('1“) eee(6.12)
.'LP - ’Flz('z‘-) h

Alternatively, the curve of fl( \’lr) vs. Y. on Figure 45 a3y be uged.

Notice that when ¢, is small, £ ('{r) Z /‘7 Using this
apprm.matmn, the error in estimating Yy is'ro great.er than 6% when e
is 00).

This methed of determining depends, in effect, upon the
relationship between q.. and the angio subtended at the centre of the circle
by an element. of arc of ﬁlength“ de , situated at the point corresponding
to wm » Alternstively, it may be recognised as an adaptation of the
(pgz).a.se-c'\ange rethod® of measuring damping, described elsewhere by the author

%

The other metheds to be used all depend on measuring the frequencies
corresponding to certain pairs of points on the circle vhich subtend right
angles at the centre. The points concerned are indicated on Figure 44. Three
pairs of poinis are considered since the vector diagrars from different
experiments had their best-defined arcs in different positions. Some of the
experiments yielded arcs which extended teyond the quadrants on both sides of
point M , btut this was not always the case.

Point M corresponds to the frequency w . The pcints are to te
paired as follows:

Point A (wa < um) together with point M; w_ - w

Point B (ub >wm) together with point M; wy - w
Point C (wc <um) together with point D (w a? wm) 3

Aw
am

A"’m .

“a % —chd

‘ﬁ’od.ce that both D and ©C together with p~in. M subtead an angle of
45° at the centre.

The following relationships can be ustablished between \I and the
above {reguency intervals: r

b
Abam e+t - () P eee(6.13)
W, e =1+ (Laq})%
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Bwed - _‘i_&{(‘-'lf “t{;d)%— (| —\'l'a&-ii"} e (6.15) -

W (12 ‘Q:'.)

3 I | -1
where éc' = %‘)f-b—%"'m 1« & ?Az--gff -o.%'i'ao %

These functions are plotied against v in Figure 45 , and may be usdd
directly to find 2z corresponding -to known values of Aw/ w_ .

We have now established methods of measuring the (hizh) modsl loss

factor, ¥ __ , and the displacement resonant frequency w _ . The use of these
methods is described in the next sections of this chapter.

VI.5 Details of the Svecimens =nd Electronic Apparatus

VI.5.1 The Specimens

Three different commercial sandwich specimens were tested and also four
other specirens which had been made in the laboratory. The commerical specimens
vere:

(a)  "Hycadamp®, manufactured by Fireproof Tanks, Ltd., having a core of
tough nitrile rubber.

{b) ¥Dynadamp”, manufactured by the Lerd MenuCacturing Co. (U.S.4.). This
had a core of soft synthetic rubber which had been specially developed
to have a broad temperature and frequency range over which it maintained
its damping properties.

(c) An experimental sample manufactured bty Farbwerke Hoechst (Germany) with
a soft, brosd-temperature band core materisi of unspecified composition.
This materiel was developed by Dr. H. Oberst. The specimen will
therefore be referred ‘o ag ?Oberst's Specimea'.

Each specimen had aluminium alloy face-plates. Dimensions of the cores and
face plates are given in Table IIItogether with measured values of the face-
plate Young's Mou 1i.

The other specimuzs had cores built up from layers of an adhesive
damping film manufactured vy the 3M's Co. for use in dampirg tape configurations.
These- laysrs were sandwiched tetween strips of 20 S.W.G. aluminium alloy plate.
Specimens were made with one, twc, three and four layers of the film. They
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will therefore be referred to as 3M1, M2 etc. The manufacturers supplied
some data concerning the dynamic shear modulus, and this is given in
Table III together with measured values of the face-plate Young's Moduli.

VI.5.2 The Electronic Apparatus

The apparatus required for exciting the specimens consisted of a
Solartron L.F. Oscillator which was connected to a power amplifier via 2
varizble attenuator. The current cutput from the amplifier was passed ,
through a step-down transformer the secondary winding of which was then
connected to the ends of the specimen. In this way an alternating current
oF up to 10 amps could be passed through the specimen, which was thereby
subjected to an oscillating loading proportional to and in phase with the
current flowing.

The osciilator frequency could be varied in increments of 0.l c.p.s.
up to 100 c.p.S., and of 1 c.p.s. up.to 1110 c.p.s. The accuracy of the
signal frequency was stated to be within 2% of the indicated value.

The supply current to the specimen wes measured by measuring the
voltage drop across ous of the supply leads to the specimen. A Solartron
Valve Voltmeter was used for this purpose. This voltage was also required as
the phase reference with respect to which the components of the reaction
transducer signal weres to be megsured. These components were directly
indicated on a Solartron ¥Resolved Components Indicator™ when both of the
voltage signals were supplied to it. )

Considerable care had to be taken to aveid picking up mains hum on the
lead from the high impedance reaction transducer to the Resolved Components
Indicator. Careful shielding of the transducer and connections in the lead
were required, together with the use of low-ncise shielded cable.

VI.6 Details of the Zxperimeunts Conducted

VI.6.1 Phase Calibration of the Reaction Transducer

The accurate determination of the frequency w__ from the respcnse
diagram of the measured points depends on the accuratemknowledge of the
phase relationship between the exciting force and the support reaction. It
therefore had to be verified th=t the reaction transducer signzl was in
phase with the force exerted on the support. If not, the p...se relationship
had to be measured. Phase shift here can be minimised by having a very high
input impedance in the apparatus to which the reaction transducer was
connected. The Resolved Components Indicator had an input impedence of more
than 50 Megohms, but this was insufficient to prevent some measursbie phese
shift at frequencies below 200 c.p.s.

The phase calibration was carried out as follows:

An aluminium strip was inserted in the testing apparatus and was
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excited at its resonant frequency by means of a very small coil attached to its
mid-span position. The coil wus free to move in a magnetic field and carried
an alternating current. An oscillating inertia force now acted cn the supwort,
together with one haif of the exciting force. Since the damping ratios of the
modes of vibration were very low (less than 0.001) the inertia force

greatly excseded the half of the exciting force.

The magnets on the apparatus which wire norralliy used for excitation
purnoses now provided a magnetic field which could be used for velocity
measuring purposes. Since the specimen was vibrating in their magnetic f{ield,
an alternating voltage was developed across the ends of the specimen which was
proportional to and in rhzse with the harmonic velecity of the specimen. The
inertia force exertesd on the suprort was in quadrature with this signal. Since
the inertiz force greatly exceeded the exciting force the harmonic force
applied to the support was in almost exact quadrature with the voltage signzal.
The ontout signal fror the reaction transducer was then compared (chase-w1<e)
with tnis other signal, using the Rgolved Components Indicator. The measured
phase difference was attributed to the phase difference between the force apnlied
to the reaction transducer and the voltage outpub.

Four different strins vere used, each having different thicknesses.
They were excited in their fundamental and second overtone modes, permitiing
phase measurements o be mzde 2t eight freguencies from 28 c.p.s. to 850 c.p.s.

VI.6.2 Tests _on the Svecimen Supports

The supports were required to provide end conditions as close to
"simply-supported™ as possible. This was checked by mounting a 20 S.W.G. strip
in the apparatus and measuring the natural freguencies of the first five
flexural modes. As vhe demping of the strip was very low, the naturzl
fregquency was taken to be egual to the frequency for maximum amplitude of
the reaction signal.

The measured freyuencies were compared with the freguencies calculated
for the first five modes of a truly simoly—vuooortod sirip of the same dimens
and mechanical properties as the tested strip.

ione

VI.6.3 Tests on the Sandwich Specimens

Each specimen was tested in itke same way. Having been fixed into the
testing apparatus, the oscillating current wes supplied end kept at a constant
lsvel vwhile the frequency was changad. A{ each [{requency Seutlnb, the Lwo
components of the reaction transducer output sigral were measured.

Tc excite the specimens in their fundementzl modes, the five mazneis
along the length were arranged to give magnetic fluxes in the sams direction.
To excite the first overtone, only four magnets were ussd. Two adjacent magnetds
acted in the same directien, opposite %o that of the other pair. The sacord,
th1*d and fourth overtones were also excited in turn with the aporogriate
magnet arrangemant. Where possible, the magnets were fived as clese as possible
to the modal enti-nodec.

With euch new magnet arrangement, the freguency renge was quicikly scanned
in order to lccate approximately the appropriate resonance. That t}e mcie excited
was the required mode could be ascertained by runnirg a2 penzil tip 2long the
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vibrating specimen. The nuvber and locations of the nodes could then easily

be identified by touch. Delailed mrasurements of the reaction transducer

signal were than taken and tLe response diagram was plotted immediately.

In this way, the necessary frequency increrents could be gauged and teken at once.

A recorC was kept of the ambient temperature throughout the tests which
were carried out between 21°C and 230C.

VT1.€.4 Measurement of E of the Face-Plztes

Sore spare specimens were split apart and one of the face-plates from
each was tested to measure the Young's Modulus. This was carried out either
in a standard tensile testing machine, with an extensometer athached to the
specimen, or by supporting the specimen on knife-edges at its 2nds, placing
small weights on the beam at the centre and measuring the central deflection with
a travelling microscope. In each case, E was deduced from +he slope of the
lozd-deflection curve.

The results of these tests have already been presented in Table III
of specimen data.

V1.7 Results
Vi.7.1 The Phese Calibration

The phase lag of the reaction tramsducer signal behind the applied force
is shoun on Figure 46. Above 200 c.p.s., this is less than 2° and was found to
have no substantial effect upor the resonant frequencies and loss factors
subsequently measured froa: the response diagrams.

Below 200 c.p.s., tne phase lag increases steadily in the manner
characteristic of piezoc~electric transducers. At 30 c.p.s., however, the phase
lag is still only 10°.

Vi.7.2 The Suoport Conditions

The meesured and calculated natura. frequencies of the 20 S.W.G. strip
are shown below.

First Second Third Fourth
R -
Yode Funfamental Overtone | Overtone | Overtone { Overtone

Measured

rejuency 28.35 112 246 b 678
CePeSe
Calculated
Frequency 28.4 113.6 255 454 710
C.DeS.

If any signficant rotational restrairnt had existed at the supports, the
measured natural frequencies wouldd have been greater than the calcuizted values
end the frequency of the fundamental mode would have been affected more than
the frequencies of the other mcdes. It is eviden:, therefore, that there was

irtuelly no rotationail restraint at the end of the strip, ard that one of the
design requirements for the supports was satisfi=g.
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That the measured frequencies of the higiher modes were lower than the
calculated frequencies may be attributed in part to the effect of the ro.ational
inertia of the end-support, but most (it is thought) to the effect of slight
flexibility of the supports in their longitudinsl directioz.

VI.7.7 The Responde Diacrems

Soms typical response diagrams obtained from the tests are shown in
Figures 47 and 48. It will be noticed that very good cirecular Aiagrems were
obtained over the whole frequency range considered, from 40 c.p.s. to over
1000 c.p.s. A unique circular arc could usually be dravn through the measured
pointe from each test, the arc sometimes extending over a semi-circle or more.
Some of the sets of measurements, howevey yielded oniy very small arcs 1e.g.
Figure 48a), but it was usually possibly to identify ciearly a frequency w
and to measure a corresponding modal loss factor. o

The Dynadamp specimen yielded a ®compressed” circular dizgram,
characteristic of systems having non-linear demping which increases withk
amplitude (Figure .8b). A4 loss factor can be deduced from the cireular arc
drawn through the points closest to w, , but it is difficult to plece much
confidence in i%s exact value or sigaficance. The results would heve had more
physical signficance {but little more practical value) hed the test been
conducted at constant amplitude of displzcement, the components of the exciting
force (current) being measured at different frequencies with reference to the
reaction signal. The reciprocal of the new "complex™ exeiting force should be
taken, and its real and imaginary parts plotted against ome another. This
snould yield a circular diagram from which may be obtained a loss facter amd
frequency  _ which correspond with the particular amplitude of vivration
of the test.

Another observed pecularity in the measured diagrams was the Ysecondary®
mode at about 196.6 c.p.s. on Figure Z3c. This was a very lightly damped mode
vhich was detected at, or close tc this frequency op most of the specimense.

I%s origin could not be traced, but it was not associated with flexural
distortion of the specinmens as its damping was much too low. The mezsured loss
factor for the primary” mode at 170 - 120 c.p.s. was measured by both the
"dR/dw wethod” and the ® Aw,, method®. Identical results were obiained from
both methods, giving confidence that the presence of the secondary mode did nct
affect the measurement of the loss factor of the primary mode.

VI.7.4 Dgrived Results

The methods of section Vi./ were used to deduce from the response
diagrams the values of w _ for esch resonant mode and the corresponding
modal loss factors. Tke valucy of w vwere then used to calculate the
moial stiffness ratios in the following simp]e manners:

A solid plate of thickmess vibrates in the r'B poge. Dénote the
corresponding generalised stiffness and mass by K and M . The corresponding
aisplacement resonant frequency (Wp)g015g » s equal to (K/K): . Wken the
sandwich plate vibrates in the seme mode, the generalised stiffness and mass are
given by RK and &4 (by definition of the stiffness and mass ratios). GCorres-
ponding to these is the displacement resonant frequency, W, , given by

2 2
w, = RXfon = (R/8). (w,) ., eee(6.16)
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From this, we have

2
R = O f(w) vee(6.27)
2
(w")soub
8 wes derived from the kmown weight of the specimen. (w r) olid vas
calculated using the known expressions for the natural frequgncies of a simply
supported iniform beam of thickness 2h, . The valuo of taken was the

fiace-plate thickness of the particular Specimen being considered. The
stiffness ratio evaiuated was therefore that defined in Chapter V, section V.2.2.
These stiffness ratio may be described as being frelative to" the stiffness of

a plate having twice the thickness of the face-plate of the perticular
specimen.

The values of R and derived from the resnonse diagrams are
tabulated in Table V and are plotted on Figures 49-52 with the frequency ¢
as the abscissa. The frequency abseissa has been chosen as it is e near
equivalent to a \¢ ebscissa. Since ¥ is a function of both G and
wavelength, it is also a function of freguency. As the frequency increases, so
also does ¥ . The frequency abscissa is zlso convenient for purposes to be
described in Section VI.Q.

T

From any cne specimen, velues of R and can be found only at the
discrete, rescnant frequencies. The values of R eand indicated by the
curves between these freguencies therefore appertain to specimens of other
lengths.

The model loss factors and stiffness ratios obtained as above mzy be
used to deduce the corresponding values of G and B for the core materiel.
Equations 5,20 and 5.31 (Chapter V) were first solved simultaneously to give
¢ (& G1) and B in terms of R and q . Substituting the measured vslues
of R and Y iato these relatiornships yielded the corresponding values of G
and 8 . These values were assigned to the frequency Ww_ , but it is
clearly an arbitravy matter as to vhether they should be assigned to W_,

w _ or to any other intermediate frequency. Further, since ® and ™ vere
obtained from data covering a fairly wide frequency range, the velues of &
and @B computed. from them must be of the nature of "weighted aversge” values
over thai range. They should not, however, differ signfica tly from the
true values. The computed values of G and p are plotted on Figures54-55.

V1.8 Discussion of Results

VI.8.1 The Results from the 3M's Specimens

The experimental values of K and are shown on Figures 42 and 50
together with theoretical values that were caleulated using the damping material |
properties listed in section VI.5.1. In calculating the theoretical values, |
the expressions for R and of Emiations 5.30 and 5.31 (Chapter V) were used.
These expressions, whicn weré derived for the two-Gimensional plate theory,
were adapted to the one-dimensionzl strip conditions by using

2
¢ = TE(h )’3 ves(6.18)
2 G \y/m
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This is thg limiting value of ¢ as r -» oo, the vonstrained modulus
E/(1 = ¥ °) being replaced by the unconstrained modulus E .

Compariscn off the expsrimental and theoretical vziues shous zood
agreement in the gerleral trends and orders of magnitude, but the exserimental
values are mostly greater than the theoretiesl values. This is more pronounced
with the larger thicknesses of the core.

In seeking an explanation for this discrepancy. consideretion must firsi
be given to the assumptions of thc thsory and to the conditions of the teslse.
The mest important approximation in the theory that could infliuence the
results is the neglecting of inertia forces in the planes of the face~plates.
However, it was shown that fthis was justified provided a certein inegusiity was
satisfied (see Section V.2.2), and this was, in fact, adequately satisfied by
each of the specimens at all the {requencies of test. The conditions of vhe
tests that ~~mld czuse the experimental and theoretical results to diffe: are
the conditious at the supnorts. Hcowever, the results of the teeis on the
supports (Section VI.7.2) suggesbtel that measured frequencies, and hence
nmeasured stiffness ratio, should i= slightly less that theorstical velues,
whereas the stiffness ratios of the sandwich specimens were greater than the
theoretical values.

.

The most significant clue to the root of the discrepancy lies in the
fact that some of the measured loss factors exceed the maximum values that can
theoretically be achieved with the perticular core thicknesses and with the
values of given by the maaufacturer. (See Ejuation 5.35 for the maximm
losn factor). This can only b: explained by aGmitting the possibility thet the
proparties of the material used in the tests differed from the data supplied.
The same explanation was offered bv Ross, Kerwin and Dyer (26) who found
discrepancies bstween their measurad and theoretical loss factors of thick
bars treated with demping tape. " They pointed ocut that there can be a wide
scatter in the measured values of G and B of nominally identical
specimens of the material selectzd from different batches. This, it wes
believed, was sufficient to account for their discrepancies which were greeter
in proportion than those found in our sandwich tests.

Consider now the measured and theorstical values of 9§ shwm on
Figure 53, where v{ is plotted against the core thirkness for each of the
modes. It is to be ' noticed that the maximum measured velues of ers

grzater than the theoretical maximum valuss, that they occur at greater
values of T , and thet the values of ¥ for mode I are slightly less
than tha thecretical values. Each of these characteristics can be attributed
to the values of G and {3 for the core in the tested spscimens being
graater than the veluss assumed in the calculstion of the theoretical values.
Justification for this statement has been found from a study of the exctensive
calsuiations undertaeken for Chapter ¥, in which values of ¥  and q vere
computed for wide ranges of G, {2 and % .

The values of G and (3 which were derived from the measured values
of R and w (as described in Section ¥1.7.4) werc found to be consistently
graater than the manufecturer's data, further cenfirming the velidity of the
explanation offered zbove.

It mgy be concluded thet the experimental results dissussed in this
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section confirm the theory of Chapter V for small core thicknesses (in
particular the theory of Sections V.22 and V.2.3), after due allowance has been
made for the core properties differing from the manufacturer's data.

VI.8.2 The Results from the Commercisl Specimens

At this stage there is little point in comparing the values of R 2znd V|
for the different specimens, as the weights of each were different. Some
comments are warranted, however, on the veriation of R and 1 with fregucncy.

Figure 52 shows that the maximum loss factor of Oberst's gpecimen occurs
at about 400 c.p.s., and over the fregquency renge covered in the tests does not
drop by more than 10% below its maximum vaiue. If the 17ss factor alone was
ihe eriterion for judging the damping effectiveness of the specimen, we could
conclude that the spzcimen was ideal for use in aeroplans structures, since
the peak in the jet noise specirum usuvally occars near the 400 c.p.s. peak in
the loss factor curve. On the other hand, the stiffness ratio dvops guite
rapidly with increasing fregquency cver thz whole range, and at 00 c.p.s. is
about one sixth of the value at 60 c.p.s. Arising from this, it is found that
the criterion K has its musimum value below 60 ce.p.s. and drops by about 25%
ovey the frequgney rengs, whereas the reection force eriterion,

K=2qZ(L + 9 5)72f (1) , has its mximm value above 800 c.p.s. and drops by
about 40% over the Temge. These resu”ts further emphasize that caution must
alvays be erersiszd when consideriag :laims made for a damping trestment which
are based solely on the magnitude of the loss factor.

The loss factor of the Hycadewy specimen is ssan to increase steadily
with increesing fregquency, and there 1s little indication of the approach of a
maximum valuae. The inertia force ciiderion increases even more rapidly with
frequency. So far as is kmeren to the author, the Hycadamp configurstion was
reached by guesswork ratner Lhesn by systematic analysis and design. Uzing
a systematic apvroach, as outlinsd in Chapter ¥, higher loss factors and
criterion values could be obtein«3, having masdmum values closer to the regions
of most intense excitation. In its present form, Hycadamp appears to be quite
suitgble for the esttenuation »% high frequency transmitied boundary layer noise.

The Dynadaiwp loss factors vary very little over th~ frequency range
covered. The waluss indicated on Figure 52 were measured at low amplitudes of
vibration, and different vzlues could be obtained at larger amplitudes. A
comprehansive study of th» non-linearity was not undertaken. The results that
are indicated therefore give only an order of magnitude for the Dynadamp loss
factors, but this is sufficient to show that they are comsidersbly smaller then
those of the other specimens.

VI.9 Methods of Comnaring the Commersisl Specimens

VI.9.1 Direct Comparison of the Zxisting Specimens

The different specimens may be compared after values of the criferia
have been determined from the measured velues of R and ¥ . The s%iffness
ratios must first be modified since the values guoted for each specimen are
relative to the stiffness of a plete having twice the thickness of the face~
plate (h,) of the particular specimen. Vhen used in criteria for compering
one specimen with another, they must all be relative to the stiffness of a
"svandard® plste of a given thickness {= ) say). The guoted stiffiess ratios
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must therefore be multiplied by (2h1/hr)3 . Sincs the specimens heve different
weights per unit area, the mass ratif term must be included in tie eriterion
expressions.

Comparisons can only be made betwsen criterion values correspording to
the same mcde (i.e. the same wavelength) of vibration. Otherwise, they rave no
meaning.

VI.9.2 Comparison of Specirens of Equdl Height

We shall not proceed with the details of a comparison along the above
lines, as the differences betwsen the weights of the various specimens were so
large as to deorive the comparison of practicel value. A more useful comgarison

can be ma’. ween the specimens if taeir thicknesses are all scaled to make
then of e #eight, or as near to equal weight as possible, bearing in mind
that the ._ .~plates are only cttairable in S.7¥.G. sizes. New values must first

be estimated for R and N of these new specimens. These new valuss can be
calculated using the method outlined and used in Chapter V, section Vek.d. G
aad B rust be known over the frequency range of interesit, so the values
deduced from the harmonic test results (Section V1.7.4) may be used.

The successive avproximation methed of section V.4.4 can he a tedious
process if X and 9 are required for a number of modes and difierent specimens,
A much more rapid method may be used if aporoximate values of X  and are
sufficient and if the scaled specimens have the same cors thickness ratios as
the originals. Priefly, the method consists of taking the curves of R and v
vs. frequency for the original specimen and translating them lsterally (in
the frequency direction) oy an amount which depsnds on the thickness scaling
factor. The loss factor curve is also translated vertically. In these new
positions, the curves give the values .cf the stiffness ratio and loss factor
for the scaled specimen. The details of the method and i%s justification will
now be developed.

Two sandwich specimens, A and B, have the same core material and core
thickness rativs but different Tace-plate thicknesses, (h §nd hH s say). The
dynamic flexural stiffnesses are proportional to R () 7 en Rb(f)hb3
respectively, the ¥ (f)'s teing the frequency depend®nt s¥iffness ratios.
Supoose that velues of K (f) are known for a range of frequencies, and values
of Rb(f) are required.

The stiffness ratios are functions of the non-dimensional quantitiss ¥ ,
¥ end £ (see Equation 5.30). ¢ is a function of fregrency, since it
depends on the modal wavelength and on the frequency dependent shear modulus.
Suppose that it has the value  _ vhen specizen A vibrates 2t the resonant
frequency f_ in the corresponding mode of wavelength M\ . At this stage
of the argument we permit the lengths of the two specimens %o be d.fferent, such
that there erists for specimen 3 a mode of wavelength A. and resonant frequency

. t b
f, for which ‘('b = Y’a .

We now suppose that 8 is not signficantly different at the %wo
frequencies fa and f, . Since T is the same for toth olates, and so
also iz ¥ it folldws that the %wo plates have the same stiyTness ratius
at the frequencies fa and f, .

Let the values of G at these two frequensies be Ga and Gb .

89

RN Y




et o omphen bt e n~

Equating the valuss of nf for the two specimens at the two frequenp:ies, and
cancelling out the equal terms, we have

AR
2

I iﬂ = [tb] .s+(6.19)

We shalil now express A/ )k and G /Gb in terms of the fraquency ratio
fa/‘ . The resonant frcﬁuencles are Proportional to

2

n
O~
-
s, 2y
et

or

Lﬁ"’

Flexural stiffness
Mass x ‘.-Iavelengthz

Since the mess is proportional to the faceplate thickness, we have
— h
%i R (E) RS ‘xi’ JRE)
®

At these two frequencies R_(£) = R (f) . Hence
a a b b

2
fa Eg._’\:: , or }; - b K ver(6.20)
* hy Xa v by K

which relates the wavelength ratio to the frequency ratio.

Over limited frequency ranges, it is possible to relate the shear
medulus, G , and the frequency by the simple law

G« f

n usually has a fractional value, and is easily found from a log-log plot
of G vs. freguency. Ve tnnrefore heve

n
ga- = [%‘] oo e(621)
b >

which relates the G ratio to the frequency ratio.
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Subytituting equations 6.21 and 6.20 into aquation 6.19 now yields

_f,b = [%a-}r’; ves(6.22)
fa b

This equation relates the frequencies of the ‘w, specimens at which their
stiffness ratios are equal. The ratio is seen to be independent of the
absolute frequency and depends only upon tiic ratio of the thicknesses of the
two specimens (i.e. the "scaling factor®), If R _(f) is plotted against
log(frequency), the curve for R (f) is obtained &imply by "isterally trens-
lating® the whole curve of Qa(?) "rigidly" in the frequency direction.

“Gonsider now the loss factors N, and 9, of the two specimens

at the iwo frequencies fa and £ . The expression for the loss facior
(Equation 5.31) may be written in %he form

¢ 3(1 +‘t‘)g

Jd Q- ... (6.22)
B (t+ ) + p° + 314V (14 ¢ + %)

If T, Y and B Eave the same values for plate 4 at frequency f as

for plate B at frequency i‘b s then clearly \'( = b * The sgg'e lateral
translation ruie mey then be used as before to deriVe the curve of \'lb VSe
frequency from the curve of \za .

Now allon 8 to change slightly from B at £ +o B, =t £ .
If the change is small, we can ignore its effect if the deBominator of %he b
right hand side of Eguation 6.23, and assume that the whole vight hand side
still has the same valur for the two plates at the two frequaries fa and

fb «~ We then have

1= = N e b = .é.b.a“ .o (6.20)

/53. ﬁb ﬁz =

This implies that not only is a lateral translation of the ¥ curve
required to obtain p » but also a vertical translation correspcndgr:g to the
facter [1317’, ‘lza o This factor is not necessarily the same for all frejuencies,
T, .
b

These translation rules have been used o obtain the curves of K end bl
for a scaled-up specimen of Hycadamp from the curves for the original specimen.
Tne value of the scaling factor, h,/h_, was taken to be 1.81, which mesmi
that the scaled specimen had the same e‘eigh"c as the Dy..adamp specimen, The
values of G derived from the experimental results showed G %o be provortional
to £0*%*~ , The curves obtained by the method are showm on Figure 55.together
with those for the scaled specimen celculated by the accurate successive
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aporoximation method described in section V.4.4.

There is very good agreement between the curves of K obtained by the
two methods. The curves for QT do not agree so well, but are sufficiently
close for practicel purposes. Tba differences here have beea traced to the
accumlation of errors due to tre anproximations in the lateral translation
methed.

The walues of W found in this way are still relative to the stiffness
of a plate having twice the thickness of the face-plate of the scaled specimen,
and must be modified (as described in section VI.9.1) before being used for
comparing one specimen with another. For comparison purposes it is most
conveniznt if the "standard® plate {of thickness h_) has the same weight as
the scaled specimens. The stiffness ratios relativd to this plate are then the
"Constant Veight" ratios, R s G=fined in section V.4.1l. Values of these
for the three commercial spacifiens are plotted vs. frequency on Figure 56.

The next stage of the comparison process must be to determine the values

of R o and for sprcimens of equal weight, vibrating in modes of the
same wavef[ength. As the r-<onani freguencies correspending t6 thesa modes will
(in general) be different for each specimern, the values of R cannot be

read directly off the curves of Figure 56 as they stand. Houevg‘i!, a simple
graphical construction may bz devised to do this, as follows:

Suppese the resonant fregquency of the standard plate is fr when
vibrating in the gi}ﬂn mode. The resonant f§requency of a scaled specimern in
this mode is £ K2 =7, i.e. R_ =f5/f2 . If the curve of
£2/12  vs. £ Is nof" superimposed on $He curvef of W vs. £ of Figure 56,
the intersection points will give both the resonant ire&ﬁencies end stiffness
ratios of the scaled specimens, If thg ¥ ow 7S* £ carves are plotted on &
log-log scale, then the curve of fz/i‘ vse [ is simply a straight line of
slope = 2 passing through the point o = 1l and £=¢ T

VI.9.3 Comparison of the Reaction Eorce Criteria for the Scaled Commercial
Snecimens

The values of X and found from Figure 56 can now be used
%o compare the three comrmerdéial specimens, scaled to be equal in weight tc the
Dynadamp specimen and vibrating with the same wavelsng he Values of the
random rsaction force criterion, R e r{’"’-'(l + \1 )= fd(‘z ) , have been
calculated and are shown on Figure 57.

There is evidently little to choose between llycadamp and Oberst's
specimen at small wevelengths, but as the wavelength increases, so slso does
the superiority of Oberst’s specimen. The Dynadamp specimen is markedly
inferior to the other twc over the whole wavelength range. It must be remembered,
hovever, that the Dynadamp spacimen showed non-linear characteristics in the
hermonic tests and that nigher loss facters and lower stiffness ratios might
have bcen cobtained at higher amplitude levels. Even so, the random reaction
force criterion values would nobt be eypected to inecrease sufficiently to
approach those of the other two specimens.

The random vibration theory, which was used to &rive the expressions for
the criterla, assumed that the vibrating system was essentially lineer. The
non-linearity of the Dynadrmp specimen means that the sipnificance of its
ranuom criterion values is therefore open to doubt. However, the results of
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the random experimsnts to be described in Chapter VIII suggest that the
specimen is by no means greatly misrepresented by quoting 'linear' criterion
values based on harmonically measured loss factors and stiffness ratios.

VI.10 Conclusions Drawn from Chavpter VI

It is considered thet the apparatus developed for testing the specimens
has adequately satisfied the requirements laid down in Section VI.2, viz. ease
of insertion of specimens, sinusoidal modes of vibration, and freguency range
of testing from 50 c.p.s. to 1000 c.p.s. The different techniques of measuring
the damping heve given results consistent amongst themselves, which fact suggests
their reliability.

The loss factors and stiffness ratios measured on the laboratory-mzde
specimens were found to vary with core thickness and waevelength in the manner
predicted by the theory of Chapter V. There were smell magnitude differences
between the measured values and the values predicted by the theory incorporating
the manufacturert!s data for the ccre properties. The differences were
consistent with the given data having lower values than realised by the core
material in the specimens.

The loss factor of Oberst's specimen had 2 meximum value of neariy 1.0 at
a freguency of 400 c.pe.s., and did not drop by more than 105 of this tetween
80 c.pes. and 1000 c.p.s. A thinner specimen of the same proportions would have
its meximum loss factor at a higher frequency. The loss factor of the Hycadamp
specimen increased steadily over the frequency range from 0.05 at 60 c.p.s. to
0.5 at 900 c.p.s. The loss factor of the Dynadamp specimen varied between 0.04
and 0.06 over the frequency range from 80 c.p.s. to 1200 c.p.s.

The stiffness ratios of each specimen dropped steadily with increasing
frequency, Oberst's specimen showing the most merked variation of from 3 to
0.5/, between 60 c.p.s. and 700 c.p.s. The effect of this was to move the peak
velues of some criberia to low frequency regioans ard of obthers to high Irequency
regions.

& quick method has teen devised whereby the measured loss factors and
stiffness ratios of one specimen may be used to deduce the values for ancther
specimen having the same core thicmess ratio but different face-plate thickness.
By way of illustrating the method, the three commercial specimens have been
compared on the assumption that two of them cen be scaled-up to make them equal
in weight to the Dynadamp specimen. Under the scaled conditions, Oterst's specin
maintained its superiority over the others when judged by the random reaction
force criterion. The maximum value of this criterion oceurred at 2 much higher
frequency than that corresponding to the former maximum loss factor.
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Chapter VII
The Random Vibration of a Heavily-Damped Beam

VII.1 The Purzose and Scope of the Chapter

The random vibration theory on which parts of chapter III were based was
essentially a small-danping theory. Since the last chapter has shown that
plate loss factors of up to 1.0 are now realizable, the random theory needs to
be re-examined to include the effects of large damping. It is the purpose of
this chapter, therefore, t6:initiats such a re-examination. A comprehensive
study is not undertaken, as this chapter (and the next) are intended rather as
appendices to the main body of the report. For this reason, the different
stages of the theory that is presented are not all discussed and developed as
fully as possible, but lines for future investigation are pointed out.

The theory is confined to the evaluation of the tetal force exerted on
one of the supports of a randomly-excited, heavily-damped beam. Certain
restrictions are made which effectively limit the applicability of the
results obtained to the simplest of vibrating beams, but these iestrictions could
be removed to generalise the analysis. The important features of the methoc
and the important parameters governing the response are nevertheless clearly
shown. Also disclcsed are the conditions under which the reaction force
criterion is valid, in the form in which it was derived in chapter III.

‘The approach that is used may be developed to stuady the randomly-
varying bending moments ani bending stresses in the beam. Ultimetely it may be
used to deal with the random vibrations of plates and reinforced structures.

ViI.2 Approgches to the Problem

The usual method of enalysing the response of a finite bsem or plate
to random lecading is that of Poweil (12). In this, the modion of the system is
analysed in terms of the normal modes of flexural vibration. Tc fiad the force
exerted at a point within the system, (say, on a support) it is necessary
firstly to find the force exerted when the system is displaced by unit amount
in each normal mode in turn. When the actual megnitudes of the modal
displacements are known, the total force on the support can be found by summing
the "modal®™ components of force.

So far, of course, this is the accepted method of deaiing with
harmonicelly-excited vibration. When the excitation is random, tane problem
is to find the spectrum of the total force. Powell shows that this consists of
the sum of the spectra of the modal components of force, togetber with certain
feross-spectrum” terms which must be included to allow for the correlation
between the modal components. The cross-spectra are difficult terms to evaluate,
and appear to become increasingly important as the damping increases.

The number of norwal modes that needs to be considered in the analysis
depends, of course, upcn the accuracy with which the final answer is resuired.
It depends on the damping (the higher the damping, the more mades are required),
on the spectrum of the exciting loading (the broader the spectrum, the more
modes are excited) and on tbe ability of the aiffereat modes to accept energy
from She exciting loading.
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An glternative method of analysing the random response masy be dsveloped
from Williams' method of calculating ths trarnsient response of aeroolans
structures to gust and landing loads (30). In this, the force within the
system is expressed as the sum of two sets of forces:

(a) the force produced at the point by the instantaneous system of
external forces, assuming these had built up slowly to their
instantancous values

(v) the force produced at the point by the instantaneous systsm .7 inertia
forces acting on the system.

Set (a) can be found by the usual methods of static strecs analysis. Set (b)
can be found in terms of a series of "model inertia forces™, the dynamic
response of each mode again heving to be analysed. Willjems showed that using
this approach fewer modes had to be considered in the analysis than in the
foramer wethod for the same degree of accuracy.

It is a straightforward step to aposly to this method the nathematical
technigues used by Powell to solve the general rendom problem. In this way it
vill be shown in this chapter than the spectrum cf the force on a supoort is
equal to the sum of the spectra of the forces exerted there by the external
forces and the modal irertia forces, togsther with cross-spectral terms deriving
“rom the correlation betveen the inertia and external forces. These cross-

s ~tra terms are of a slightly simpler form than those of Powell's analysis.

Williams' method has been adopted as it still appears to offer more
rapid comvergence (i.e. requires consideration of fewer modes) than the method
of Powell when the danping is high and the loading is continuous and random.

A proof of this statement is not given in this chapter, being one of the
features scheduled for fulture investigation. However, there should be no
essential problem in using Williams' original proof, almost as i% stands.

VII.3 The Reaction at a Suvvort of a Randormiy Vibrating Beam with Heavv Demining

VII.3.1 The Power Svectrazl Density under a Generszl Loading

The beam considered in Section VI.4 is now excited by a distributed
loading, p(y,t), which variss randomly with respect to both space and time.
I% is required to estimate the power speciral density, and hence the mean sguare
value of the toital force exerted on the supnort by the external loading together
with the inertia forces of the response.

In the analysis of the rendom loading and response we shall use the
rethod of generalised harmonic analysis as used by Powell and others. To find
the power spectral density of a randomly varying cuentity, q(:), we first fiad
its Fourier Transfornm, ?,q(iw), which is defined by the reiationship

-
-t
EAC "z"w'rj qt) e at vee(7.2)

-7
The power spectrszl density is then given by the relationship

ém(w) = -;Li:“ %lr}%(;“’)l oo (7.2)
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and the mean square value of the quantity by
o«
() = j % q,("’) dw ee(7.3)
-]

Let the local transverse acceleration of the beam at the point ¥y
be #(y, t). The local inertia loading is -p#(y, t). Together with the
externally applied loading, this gives a totaf force on a support of

L) = [ {pG®)~ pw (.3.\"»)} Ry ene (7.4)
y

in which the limits of integration devend on the boundary ccnditions of the
beam. As before, we shell call this total for:e "the reaction®. Let the
part of it deriving from p(y,t) be denoted br Po(t) , iee.

Tl = S ply.t)dy . e(7.5)
y

The displacement of the beam, w(y,t), will new be expressed by the
series of normal modes of vibration of the beam, as in section V1.4, i.e.

wiyt) = Y Wof.@
fn=t

go that the local acceleration mey -l-)e written in the form
o (2]
w(yt) = Z w, .oy . {7.6)
a

The generalised displacement and rcceleration satisfy the equation
2

Mn\.{fn + Kn(‘+;‘zn)wa = j P(”t) fn(j) dj ="pn(:&) vee(7.7)
° )

Damping coupling of the normal modes is therefore excluded.

The Reaction now becomes

LWe) = T - Z {;’n S]-‘ﬁ‘:l) ] .o (7.8)

n=t

and its Fourier tramnsform is
T Ga) = L Go) - Z'}Qn(iv) l Py e+ (7.9)
n=s

Here 3 o(ilo) and qﬁ (ivw) are the transforms of P_(t) and el
resp-:»ct{ve . a ° n
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Row the transforms of the generalised displacement (%, (iw)),

generalised acceleration, (Qﬁ (i»)), and generalised force w’f'ﬁ' (iw)) are
) Pn
related by

'}Q (Zw) = -(,)z'}w (;w) - -w’zq‘p“(;w)

0ee{7.10)
(Kn - th‘) + ¥,

Putting (K“-v Hnb;) + L Kn 1. = Z see{Tell)

n
into equation 7.10 and then substitiubting into equatior 7.9 yields

@L(lu) = '}Pe(.““') + Z.‘_;} "3-?“@) Ilk“‘;()')dj vu(7.12)

w=eq

To find the power spectral density of L{t), we now use equation 7.2, which
gives

J = Le Z]3ca)

L T

k PP
G G, Gu) vr{7.13)
T T -

the asterisk denoting the complex conjugaute.

On substituting 'F.(iw) into this from equation 7.12, and demoting
the power spectrsl {ensities of Po(t) and Pn(t) by Po(w) and
Y Pn(w) , we find

D 4 2
3 = F )+ Y 2o E ] rE0Y]
a<y A\

0 *x %
. 2 () foo i H
+ KL %—‘g Z wz I P‘a (y)o\-y l’o( ?P,\L(‘ ) + "}Po( «) ?Pn( )

3w "t 2“ 2:
lim 2 o o T oy Tuf aofTonlidIeiod e 6) %, G )
e N . B

(nxr)
The first term fn the right hend side is simply the power spectrel density of
the force, P (%) , exerted on the support by ihe external loading. The
second term (The first series) is the sum of the individual power spectral
densities of the modal irertia forces acting on the support. The third term
(the second series) represents the corntribution %o the total pover spectrum
due to the fact that the inertia forces in each mode are correlatied to some
degree with the force exerted by the extersel loading. The final, dsuble
series represents the contrilution due to the fact that the inertia forces in
onz mede are correlated to sowe degree with those in another mode.
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ks this chapter is intendsd mainly to be an introduction to the methed
of enalysis but also to be sufficient to deal with the simple vibrating
system of Chapter VIII, we shall now restrict attention to vibration in which
the inertia forces in one mode are very much greater than those in all other
modes. This would occur in practice, for examp.le, if a plate were excited
under coincidence conditions in one of its modes. The expression for the
power spectral density of the reaction is now greatly simplified. From the
first two series, only the terms correspording to the significant mode are
required, end the final double series may be disregarded altogether. This is
pot to sgy, of course, that in genersl the final series cam be ignored. It
will certainly be important when there are signficant inertia forces present
from each of two modes which have close natural frequencies. The higher the
damping, the less-close need the frequencies be fcr the series to be importent.
However, a detailed study of it must be left to a later date, using the ideas
of Lin (31) who has studied a similar series, without the ;4 term, and with
light damping.

We now congider in detall the terms which remain in the equation for the
power spectral density of the reaction:

4 2
EL(Q) = §P°(o.\) + li‘i ‘2 §P¢\(N)[ ka{“()) a\’]

.{7.15)

N +* .
L" - :2_‘1\’ (‘}: (1) '§?n(; u) ';'N(': u)’?’“(- )
T z, + <

o j;‘\fhﬂy)d].

n

Genergl expressions will first be obtained for the spectral densities
§Po("’ ) 2ppl{w) and for a cross-spectrs” density which emerges from the
third term. Ouing to their complicated nature when the excitation is of the
most general kind, these general expressions will then be reduced to a much
simpler form corresponding to a special, simple loading.

The first term in Equation 7.15 is given by

. . x .
§Po(u) = B O, Ge), ()
+7T +¥
s i e wt
_}::w 'i:r:—TjT LP (yt)e  ay d‘r-l ‘3 P(y,t)e dydt ,..(7.16)

Multiplying the integrals together to form a quadruplz integral, re-arranging
the order of integration and introducing the variables y;, y2, t1, t2 to
jndicate the order of integration, this becomes

3, () =

+T 47T
TG (PP
Zv € ¥ b, oty dy Ay, ... (7.
T—:eo T Iy iy iy T‘-TP Y.t P, R db o5 dy 4y, (7.27)
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Now put t7~%, = ¥ . The inner integral
T

1PN 1 . —
el _—;! POWWEI Pl b+ ) ok, = Py, y,,T) .(r8)
-r

is recognised a3 the cross-correlation function between the pressures at the
points yj, y2 with the time deley T .

The power spectral density of Po(t) now reduaces %o

~

+7 :
E?,,(“’) = l | La L I < fi’ghyut)dté’tﬁ:"’(?’lg)

in which

4T

Lin L j Bl e WV ar = §P,,(w\) - i§?s(~’) eee (7.20)

R L

is the important ®cross power spectral dengity®™ of the pressures a% ¥y and
¥, - The above equation, (vhich defines §pc(w) and S(‘*’ )) shows thai
in general it is a complex quantity. When ¥; = Yo » the ginary term
vanishes and leaves a reel term which is the power spectral density of the
local pressure. The real part of the cross power spestral density is the
"cosine transform" of the tross-correlation function snd the imaginary pert
is (~i) times the sine transform.

The cross power spectral density can be nca-dimensionalised by dividing
it by the square root of the product of the power spectral demsities of the
pressures at y; and y2 . Denote these (spactral denmsities) by £.(yj,w)
and 2, (y5,w). “There is no nes=d for a suffix "c" or "s®, as the sine trinsform
is now identically zero. Non-dimensionalising in this wey, we get:

cc (’c ,)'z ,u)) = '§P&(’y‘ 'yz aw)
/ 2, (3w} 2 (5am)

eee(7.22)

Cfv()'c :Sz»"’) = §P‘ (3' :)’u“’) se(7.22)
j§P (ynwl §p (yx’w)

(ce = icg) has been called the “correletion spectrum® of the pressures at the
two points. The real part of it is ideantical to t¥ narrow-tand correlstion
coeificient bstween the pressures at the two points.

Using the above notation, it can be shownthan Equation 7.19 reduces




finally to the form
7 ¥
§P°(u) = Lé', (y, ) Syét’ (’72’ w). €. {y,.y, ) dy, dy, ...(7.23)

The Imaginary term does not apwear_gs it venishes in the double y-wise
integration - as it must do, for f Po(w) is essentially a weal quantity.

Consider now the second term in Bquation 7.15. The same type of
anelysis as above be used to show that the power spectral density of the
generalised force, -gpn(w? » is given by

LI b
& ) = 5 30y, ‘n‘s-“ 3.6y, ) L) ecly, Ly, 904,90 (720

The third term in Equation 7.15 is the most complicated of them all.
Whereas only the cosine transform of the cross-correlation function
contributes to i%(u) and @, (©) , the sine trassform and the cosine
transform contribut® to the third term. It can be shown that

*
Bm 2% % (o)3 Qu) =
T%m T Pe ?ﬂ

> % % i
[ Faty, 0 )| Bl e, 0 ~ sty oy ]y, oy,
° J

oo {7425)

3l

. RS
A similar expression holds Tar Lim 2= ¥ Go) Gw) o
T e o ‘Pﬁ

Eveluating the whole of the third term of Eguetion 7.15 yiulds:

2es £ Ay} (K ~-M ) béb ){()jgi( w Yy 4
—— -~ w w “
1z, gr SEA R L p IV ) Ty JaB) &Ly, Y, ,w) 8y 4y,

D & :
* Kt\viu } §;{3."é ) {l\ﬁyl)j. l;’: (31'a) CS ('yn ‘Jz ’u) ‘;\’:AX )
° Y oee (7,26

We have now obtaired deteiled expressions for each of the component
terms of the power speciral density ox the besam reaction, as given liy Equation
7.15. TFor general loading distributions, the evaluation of these expressions
for the whole frequency range poses a problem of great complexity. Fortumately,
some (but not all) of them need only be evaluated over limited frequency regions,
outside which their magnitudes are not important.
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In the remainder of this chapter atiention will be concentrated on
particularly simpls loading distributions.

VII.3.2 The Power Spectral Density with s Special Loading Digiribution
Suppose now that the external loading is of the form

po(%) : f.(y) ene(7427)

where pof Y 45 the instantaneous pressure at the point ¥o : and 2GF) 38
& non-dimensiongl pressure distribution funetion. Crudely speeking, the
pregsurs at all points are now in phase with one anotber but the amplitudes
at =11 points sen be different.

The overall cor—elation coefficient between pressures at any two
points is unity, and the correlation spectrum is entirely real with unit
velue for all frequencies and pairs of points. This effects great simplificutions
in the loading dzpsndent terms of the reaction power specirum.

Equation .23 reduces to

%(Q) = §P(3mw)nf«‘\3)dy]z= i(yo,w)\{: eeo{7.28)

Equation 7.2 reduces to
z

] b 2
iﬂ(w) = fp (‘70,“’)[ f L) ‘Fn(y))‘_i‘ = §P (y, ,u)\f;“ vee(7-29)

The double integral in Equation 7.26 that contains cs(yl,yz,w) vanishes,
whlle the other resduces to

§,,(:1’.,‘-’3r1—(3)’?.,‘3)43 fi<3>*3 = 20,0Y, ..0o0
o y

A

Notice that Y = Y, .YM

Each of these terms is now proportional to the power spectral density of the
rressure at Vo * A3 derived above, they will be used for the calculations
involvea in Chapter VXII.

The losding distribution assumed sbove is one extreme ferm in which
unit correlation is mintained over #he whole beam. At the other extreme
is the condition when the correlation .alls off to zero in & very short Jength
compared with that of the wavelength of the mode £,(y) . The analysis with
this distrivution can be dealt with quite simply (tﬁough not as simply as the
unit correlation vase) tut will nct be considered rere. This is enother festure
to be left for futurs study.

With the loading distribubion of the form givan by Equation 7.27, the

= s I R R T AT T GO L




power spectral density of ths reaction (Equation 7.15) bacomes

B) = §P(y,.w){Y; * Ym“ “f u,u,]

Y 2 w (K an) glu.g (3)4] “‘(7'31)

1z1?

Ih this, all the Y's arse independent of frequency. This.3s only true for the
particularly simple loading distritution witk unit correlation over the beam.

V1I.3.3 The Mean Sgusre Reaction at the Support due to the Special Loading

The msen squars reaction is found by iategrating the pouwer spectral
density cover the whole {requency range from i = 0 to infinity (see Equstion
7.3).

On integrating the first term of Equation 7.31 we obtain Y, timss the
mean square value of the loading at ¥o

L §p(3o,“") Y;o Aw = Y;,o < Pf) vee{7.32)

. ia which "4 p:) is the msan square value of ths loading at the point Vo *
Integrating the second and third terms of Equaticn 7.31 yields integrals

of the form
®
,[ 3 (y a.s) w? Aw
A v N

The integration of tbis has been discussed oy the euthor in a nrevious peper (22),
tut only for the case of smell damping. However, irrespective of the size of
the damping, it can be shown to be identical %o

3 N

K s o WVast
T §§(°’ mi”‘“ (”7“)J‘§{%")‘“

N

2 .
& _<_E-;—2— ao-(7'33)
Mn
Te evaluate the integrels conteined within this expression, we now
made the usvzl assumption that & (yo, ) d?is not vary appreciably with «

in the region of the resonant peak” Pot 1/iz y and thsy the greater part
of each integral comes from this region of uhe resonagnt peak. There is
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ampie justification for this when the damping is light, but much less when the
denping iz heavy. However, we shall concern ocuraelves opnly with ths orders
of magnitude of the integrals and the assumption then becomes reasonable.
Suppose the valus of B _(y, ,w) at the resonant frequency w_ = (K /M )'ﬁ'

is 3 (wn) (dropping the iy, for convenierce). On the above aSsumption"
we canPnow say

x5 0
w" = _“f o3
L §P(3° ,w)E'-‘ 2 Ao = §,, (W) L\Zn‘z oee(7.34)
and
[ -3
) .

b— J“’ = n e A‘ [ XX ) . 5
J ¢, (5, ) . N 3[}26‘1 (7.35)

The integrals in this final form can be evaluated exactly, provided trat
Kn and a (contained within 2_) do not vary with frequency. If they de,
mirerical integration is the cnly metked of evaluation.

The exact integrals are found to be

[

. £
2 2
J_‘:’.z. do = T Wo )t * jievg eca(7.26)
otz,,\‘ 2 ¥ 10 2
and
] $
i T Zz
OIZ,'n 2 K\"a 2(‘_,,,,(1)
«

These now enable us to find the tot megN SqQUATE weaction, {Lz) = f §L(°’ Ydeo,
{rom Equation 7.31. Putting X, = M w," , we {inglly obtain o

a .2
d* = <pd Y, +

2
2 [[pdyt
+ <p3>Ymill_:‘..:*_1’i¥l |

2
n
@ “""'"m?'
+ <Pe>2Ym IM -t % ﬂp(wﬁf’ﬁﬁ P+ fiens { fro -t
Ma <P:> 2 ‘iﬁ 2 * <,£u )

S o {7.35)
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The first term on ths right hand side of this equation is simply
the mean aquare value of the force exerted on the support by the axternsl
loading. The second term is the mean square value of the inertia force
exerted on the support by virtue of the motion of the beam in th2 nth mode.
The third term allows for the fact that these two forces ars correlated with
ore another and jincreases with increasing damping.

The necessity for this third "correletion term” may be seen by
recognising the total rescticn as the sum of two randomly varying vector
quantities. The mean squsre value of the total vecltor is the mean sguare
value of the modulus of the vector. This, of course, is not egual just to the
sun of the moduli of the individual vectora, but to this sum together with
another quantity which depends oun the phass (i.e. degrse of correlation)
between the two vectors.

To assess the relative megnitudes of the different terms of Equation 7.38,
it is convenient to re-arrange it into the fourm

' 2
Gty = <pXlv, ~Y.. ili‘-:ai’ifi] ,
'n

§2(w,,) T owg t+f1 + 14 ‘xn;“uﬁ‘(y)dg « i

xli'x;m{:{n(y)dy (Q'W) + gYw(;;;';!z“ug)] aee(7.39)

in which Y,g does nct appear, having been replsced Wy Ypme. Iz in the
course of the re-arrangement.

Now the part of Equation 7.39 which is independent of the spectral
density, iﬁp(wn) » can be shown to vanish *denvically vhen the excitation
constitutés™a "normel loading”. (See Section VII.3.4}. The spectrum—dependent
tern then becomes all-imporiant. Under other losding conditions the term will
not vaaish, =nd the magnitude of thne non~dimensional factor

ép (""n) .f
{pdd 2

in the other term thern plays an imporiant vart in esteblishing the relative
impecrtance of the two terms. As this factor frequently appeers in random
vibration thsory of this type (e.g. as in reference 3<) some typical values

of jt are conzidersd belcw in section VII.A. Witihout considering specific

modes and loading distritutions, no more coanclusiong can bs drawn about the
relative veluss of the terms in Eguation 7.39. In the next chapter, calculatiens
ave carried ot on the basis of this theory for « special system, snd the
relative izportance of the terms is seen.

W, = X e (7240)

Enother nan—dimsnsional term may be identified in Equation'7.39 alter
dividing through by Y5, , viz.

Yo Jphode |y

Y“ M, = sey . eee{7:41)
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This term is probably peculiar to the prssent particulir preblem and will not
be discussed hers.

Using the symbols & and X permits Fquation 7.38 to be written in the

form:
JR—
(‘3) = <P§>Y;,i I+ gz{; +X%‘!‘_Z_..___Jz'*m‘(2..m) +

(s o xd [FREE (-
¥ ‘3[ +X'§:Jr 2 SRS ) v {7.42)

or in the alternative form corresponding tc Equation 7.39:

2(, 2 A—
Q% = <Y, ) (-9) + R3¢ RN {g(g-c)-;—m(z»-*g}g}

(g

>

L

eee(7.43)

Vil.3.4 Excitation b7 a Random Normal® Loading

& "pormel® loading is one which at all polats on the structure is
proportional %o the inertia loading correspondinz to ons of the normal modes
of the structure. i.e.

ALy = Constast x /A‘Fn(}j) e {7.44)

Using this to find the Y's , and remembering that
b z
My, = j [KA"& W Ay
&

1% is found that & =1, and that the vhole of Equeticn 7.3% or 7.43 recduces
to the foru

b “2.@. % e )
By = (u;g;-;,,gg}ajj 3 o Lo wﬁ‘:{gj_l-’-
‘e P idiq, 20+t )

oo-(?o\_ }

uhich is sctually identical to the square of Equation 3,29 {Chapter III} from
vhich the reactica force criterion was derived. The derivation in this chapter
serves o emphasize the comditions under which tie rzaction fores criterion foo
assessing dawping treatwents is strictly relizble, viz. wnen the excilatisu
constitutes a normal loading, when the inertia forces of just one mode
predominats and when the pover spectral density of the loading does not vary
asprecisbly in the region of the resonant peak of the excited mode,
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Vil.4 cal V. £ the or X_
Attention was drawn in section ¥II.3.3 to the non-dimensional pararater ¥,

defined by
X _ §p (""n) . Wq . l\"
; <pd 2

I%s magnitude can bs visualised by considering a typical spectrum, ; (w),
such as that 1llustrated in Figure 5, or in the diagram below:
A
3,6
§,(w,‘)

A I

B,

b e o o —

~a
-~

C.
[

(o] w, FREQuENCy

e

-~

The mesn square pressure, <p ) > 1s proportional to the total aresz under the
curve, while the term & (& ?. tén, 1is proportional to the area within the
rectangle O0ABC . If the spectrum is fairly smooth (3.e. if it has no sharp,
high peeks) it is evident 5hat % will be small if W, is at the low
frequency end, If the spectrum doss contain high peaks, one of vhich eccurs
at o ¢ Ghen X can have a high velue. Some typical values of this
parzmetér are quoted below, having been derived from the {smooth} spectra
of the noise pressures from an Aven jet engine. Some of these values are used
in Chaptrr VIII.

Lo (amwy) | X Condition
200 0.1 Minimum value, close to jed
200 1.2 Heximun value, clgse to jet
500 0.15 Minimum value, close to jet
500 0.60 Maximum value, fer from jet
1600 0.30 Minfour value, close to jet
1000 0.54 Haximum value, far from jet

The meximes end minisum valunes wers found from dats relating to severzl different
jet speeds and locations sround the jet.

in the nsar-fisid of & jet engins, the noise pressurs distribution dees
not conform to the simple fornm of Equation 7.27, so that somg doubt may be
expressed as to the validity of quoting these valueg of X in the present
context. However, over distpnees which are representative of fuselage penel
dimensions, the nurrow-band pressure correlation coefficissts do not drop much
below a valve of 1. Thic suggests that the quobed values of % can justifiably
be considered here.

- e e e BTG TR L ]




Less justification can bte offered for quoting values of R corresponding
to boundary layer pressure fluctuations, but it is useful to bear in mind the
valuss which it can take. In view of the nature of the boundary layer
pressure spectrum, (see section 1.3.2), it is evident that

',\( —_:_: k19 ‘F-.\
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With fp = 500 cepes, and £ nporr = 6000 cepes. (as in Figure €),
this gives X = 0.13.

VII.5 Concludinz Remarks

The first part of the analysis of this chapter has re-emphasized
the complexity of calculating the response spectrum of even the simplest beam
cubjected to a general random loading. However, if the loading distribution
is of a simpie form, a relatively simple expression may be derived for the
mean square response. The expression for this that has been developed in this
chapter has disclosed the importance of

(a) a contributory term to the mean square respcnse which increases with
t increasing damwping, and which derives from the correlation between the
random excitation and ths random inertiz forces,

! {b) the loading parameter, x = By (W) . Wa LY
" <p3d 2

The expressicn for the meen square response was derived on the assumption
that:

(1) the power spectral density of the exciting loading did not vary
appreciably in the region of the resonant frequency of the system

[P e e R

(3i) ‘that- the demping end stiffness of the aystem were not frequency
dependent.

The extent of the region referred to in (i) depends on the damping. The
higher the demping, the wider is the region, and the less is the likelihood
of assumption (i) being satisfied. Further, if the high damping has been
achieved by incorporating a polymeric materizl in the system, its presence
and naturs will ensure that the stiffness and damping are frequency depzandent,
so violating assumption (ii). Ths error incurred in the theoretical meen
square response due to the violation of these two assumplions can only be
invegstigated in particular cases, but it is conceivable that it will be of the
szme order as that incurred by omitting the large damping -corrdetion factors
diseussed in para. III.4.1.
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Chapter VIII
Experiments on Sandwich Besms lnder Random Excitation

VIII.1 Purpose and Scope of the Chapter :

As several important assumptions have been made ia the random vibration
theory of Chapter VII, it is to be expectsd that the theory can only give
approxi rate values of the mean square response. It 1g therefore desiryble to
investigate the accuracy with which the theory can in fact predict the random
response under real conditions. It ig the purpose of this chapter to describe
such an investiza*ion in which the sandwich specimens and the test rig of
Chapter VI were used with random excitation. The r.m.s. reaction at the
support was measuved and its value iz compared in this chapter with values ,
predicted ny the random theory of Chapher VII, using the loss factors and ;
resonant {requencies measurad in the harmonic tests of Chapter VI. A ;
comparison of the spscimens on the basis of the simple random reaction force
criterion is itself to be compared with a comparison bused on the measured
vaiues of the random reaction.

mern e

o

[y NN

VIII.2 The General Method of the Investigation

Rach of the wmpocimens of Chanter VI was excited in the same test rig
as before by a randomly varying current. The response oI ine specimens was
arrarnged to Lz predominantly in the second mode by the appropriate disposition
of the magnets on the rig. The spectrum of the exciting current (force) was
adjusted such that the values of ¥ (Equation 7.40) corresponding to the
frequencies of the second modes were of the order of 0.7, i.e. approximately
mid-way between the two values quoted »u Section VII.4 for 7~ = 200 c.p.s.
Under these conditions the rom.s. value of the random reacti . signal was
measured for a given r.m.s. value of the exciting current.

The theoretical prediction of the random reaction may legitimately be
based on the theory of Chapter VII as the specimen test conditions satisfied
the loading ccndition of Eguation 7.27 (unit correlation of leading all over
the beam) and the "uni-modal condition™ of Section VII.3.1. The cuantities
vhich must be known for the prediction are shown in Equation 7.38 to be:

(a) Ny and w_ 5 these are to be taken from ths harmonic test results
of Chapter 1.

(v) {poz) ; this was proportional tc the mean square exciting current.

(c) 50( w ); this was proportional to the spectrel demsity of the
exciting current.

(@) AR(y) , implicit in the Y's ; this was proportional to the distribution
along the specimen length of the magnetic flux cutting the specimea.

(e) fh(y) ; this has been assumed to be of the form sin 27Wy/b .

Measurements of (b), (c) and (d) had therefore to be mads. Further, the
constants of proporiionality betwesn the exciting currsnt and the local i

SR s
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loading and also between the reaction force and the reaction voltage signel
had to be determined, -

In actual fact, the theoretical prediction in this chipter wields the
T.i.S» value of the random reaction signal produced by known excitation
conditions. This quantity is ccmpared with the measured r.m.s. reaction
signal.

VIII.3 Detsils of the Experinents

VIII.3.1 The Aoparatus

The sandwich specimens and the test rig have been fully described in
Chapter VI. In these random tests four magnets were stationed at epproximately
4 and £, 5/8 and 7/8 of the beam length from one end. The flux due to each of
the first pair acted in the same direction, opposite to that due to the
second pair.

The exciting curren® was supplied by a power amplifier driven by a
random-noise signal ger :rator. As the spectrum of this signal was virtually
flat up to and beyond 30 ke/s, it had to ve shaped to concentrate the signal
energy in the lower audio-frequency range. Accordingly, a Cawkell adjustable
filter was used, set to pass frequencies between 2 c.pes. and 700 c.p.s. With
this sebtting, the value of ¥ for the exciting current had the prescribed value
of 0.7 (aporoximately) at 200 c.p.s.

The r.m.s. value of the exciting current was measurzd on a Solartron
True R.M.S. Voltmeter. using the same veclitage signal as in Chapler VI to
monitor the exciting current. The spectral density of the current was measured
by pessing the same voltage signal through a Muirhead L.F. Analyser, and
measuring the r.m.s. value of the resultant filtered output. The equivaient
pass-bandwidth of the analyser was 3% of the frequency ssatting. As the
anaelysing filter dii not possess by any means an idezl "steep-sided”
characteristic, the spectral density measurements may have been subject to
small errors.

VIII.3.2 The Experimentsl Procedure for the Random Tests

Each specimen was tested in the same way at a temperature of 21.5°C,
elthough some tests were conducted at temperatures closer to 24°C., The
exciting current was first adjusted to give an r.m.s. voltage of 1CO sV across
the ™measuring resistance” in tha circuit (see section ¥I.5.2). The rem.s.
voltage output from the reaction transducer was then recorded.

Also recorded was the 'residual noise' ocutpubt signal from the reaction
transducer which was present when no exciting current was flowing. This
derived principeily from mains hum pick-up. Although its r.m.s. valuz was
found %o be nearly 10% of the total reaction transducer output for some of
the specimens, the true signal due to the reaction force differed negligibly
from the measured total. This was due to the residual noise being altogethe
unco—related with the true reaction signal.

VIII.3«3 The Measurement of the Svectrum of the Exciting Current

The voltage signal from the curreat measwring resistance was passed
through the L.F. Analyser which was set in turn at a number of different

109

ALV U TE S

SRR N P | -




frequencies over the range 20 - 700 c.p.s. The r.m.s. value of the output
from the analyser was measured on the r.m.s. voltmeter. The spactral density
was then given by the square of the indjcated r.m.s. value ¢ (0.03 x the

frequency setting).

The indicated r.m.s. voltage suffered from long-period fluctuations
which were an inevitable consequence of the narrow (3%) bandwidth of the
analyser and the finite integrating time of the voltmster. Although the
integrating time constant of the voltmeter was set to about 400 secs., over
longer periods than this the r.m.s. indication could vary by as much as
% 15% about a mean value. To estimate the mean value therefore involved a
prolonged period of observation and recording for each frequency setting of the

analyser.
The measured spectrum is shown in Figure 58.

ViII.3.4 The Determination of the YLoading Distribution Function, l(zl

Since the same current flowed along the whole length of a specii~n,
the corresponding loading at any point was proportionsl to the lccal magnetic
fluxs To measure the distribution of this flux along the specimen, a shori
wire conductor, # in. long, was placed in the magnetic field in place of the
specimen and the force exerted on it was measured when it carried a known
direct current. The force was measured with 2 cantilever beam on which a strain-
gauge bridge sensed the bending sitrains at the root. (The beam wes originally
used o< a vibration displacement transducer). A force on the tip of the beam
produced & proportional out-of~balance voltage across the bridge which could
be measured on a galvanometer.

Accordingly, the wire conductor was fixed to the ead of the beam and
plazed in position in the magnetic field. A known direct current was passed
through it and the galvanometer deflection was recorded. Readings were teken
vith tho conductor at about forty different stations along the magnetic field.
The flux distribution, andience .£(y), is shown in Figure 59.

Absolute values of the force exerted were not deduced, as the distribution
function vas only required in & non~dimensionsl form.

VIII.3.5 The Determination of the Relationshkir between Loading and Current,
Reacticn Force and Reaction Transducer Qutput

The instantaneous loading on the specimens was proportionsl to the
instanvancovs current, zrnd hence also to the instanteneous velue of the
voltage, Vp(t), across the current measuring resistance. We may therefore
write:

Plyt) = p @) &y = k. Vp (+). £(y) voe(841)

Similerly, the instanteneous reaction foreca, L(%) s and the regetion
transducer output voltage, V,(t) , may be related by

V(0 = k.LG) s
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Using and kr in ccajunction with Equations 7.42 or 7.43, it is
seen that the mgan square value of the reaction transducer voltage is given by

(Vz') = KKY (V ) xFunctionof X , 9  ami Nn ees(8.3)

rpTeo®

The prediction of <vu.3 therefors requires the product kpk ¥: k. and are
not required individ i¥s rkp kp

The product vas determined from a test on a lightly-damped,
solid aluminium specimeg ?36 SWG) mounted in the test rig and excited
mrmonically at the resonant freguency of its second mode. Being lightly
damped = 0,002), the total force exerted on the support was virtuelly
equal to the inertia force alome. The amplitude of this is easily shown o be
given by

b
W] JotWeiay £y 1Y, Y (WA

M Mn kG

The amplitwdes of the harmonic signals V. (t) and V (‘l’) under this resonant
condition were therefore related by

V.l = ke \?owlY’j

- 3 W, ‘
- “rk'Yoo- T vl

Hence, the product was evaluated from measured values of W I and (V.
at the resonant frequency of the aluminium specimen. The modal loss factor
of the specimen, ¥, , was measured from the wijth of the frequency response
curve near resonance and was found to have the velus 0.00176. The value cf J
was found using £, (y) = sin 2‘ﬂx,/b, together with the distritution function,
L(y), found in section VIII.3.4; above. These yielded G = 1.34.

VIII., Details of the Theoretical Prediction of the Rendom Reaction

The mean gquare voltage from the reaction transducer has been shown in
the last section to be given {theoretically) bys

kek Y, . 1V
T

ene(8.5)

<V:> = k‘,k Yz ){ + ‘52[1 > %“ i+{;_:o-_— 3:(,2_1‘—:&—)].?

+ ’Z‘J[-l + :% L%@(Jﬁ'q—:’ -i)}}

oes(8.6)

which has been derived from Equation 7.42. For the mode and loading
distribution being considered, X has the velue 1.34 (&s in the last section).
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The value of ( has to bs evaluated at th: frequency ), corresponding to
the second mode of each specimen. These frequencies are taken from the results
of Chapter VI. The value of § («,) required in X has been taken from
the measured spectrum shown in Figure 58. The values of vl found in Chepter

VI for the second modes have bsen used.

In the evalvation of {V 2), it is of interest to compore? the relative
magnitudes of its three compongnt parts, viz. that part deriving from the force
exerted by the external loading, that part deriving directly from the modal
inertia forces, and that part deriving from the correlation between these two
forces. These parts are represented non-dimensionally within the large
bracket of Ejuation 8.5 by the unit term, the Y 2 term and the 2YJ term,
respectively. The values taken by each of these terms for the different
specimrens are shewn in Table VI , in Ehigh are also shown the values of
fol= wp/2w), v, », and finally {V.°) i.e. (Vp)rms « The values of
these latter quantities correspond to (vpsrms = 0,100 volts, at which value
the experiments were conducted.

VIIl.5 Experimental and Theoretical Resulis

The measured and predicted values of the r.mes. reaction transducer
output are shown together in Table VI.

VIII.6 Discussion of Results

Before comparing the predicted and the experimental resulds it is worthy
of note that the values in set B of the experimental results are apvroximately
1.50 times those in set A. Set A were measured first and sebt It were measured
some time later after some of the apparatus had been celibrated. In the courss
of the calibration the stability of some of the measuring apvaratus was suspected.
It is possible, therefore, that the values of set B were measured after the
apparatus had drifted away from its calibrated state.

If the value of set B are divided by 1.5, it can be seen that both
these and set A agree very well with the predicted values.

If these factored sel B values and the set A values are correct, the
validity and accuracy of the theorstical approash are amply confirmed and
the assumptions on which the theory is based are justified - at least, when the
theory is applied to the particular specimens and coniitions of the %ests.

Also justified by the agreement of the results is the usz we heve mde
of the harmonically measured values of w. and V1, 1in predicting the
response. In Chapter VI (section VI.7.4) some discussfon took place on the
effect of the frequency devencence of and R on the apparent values of
W, and W n Deasured from the vector response curves. It was concluded that
tte effect was likely to e very small. Confirmation for this now comes from
the fact that the measwred salues of w_ and Vn cen be used to predict
the random response quite accuvately. n n

The terms in Table VI which contritute to the total predicted response
show the relative importance of the correlation term (oC 2T ), the direct
inertia term (2 ¥ 2) and the term due to the external loading (the uni. term).
With low damping (as for the Dynadamn specimen), the direct inertia term
predominates in the expected way, and the correlaticn and external loading
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terms are of little signficance. On the other hang, with high damping (as for
Oberst's specimen), all three terms ere of similar magnitude snd the exclusion
of any one of them cannot te justified,

That the correlation term should be negative in each ca<e follows from
the values of X being relatively small. 1 account of this, it cen be shown
that the correlation effect derives meinly from the correlation of the frequency
components of the inertia force and excitation which 1ie above the natural
frequency. Speaxing in terms of harmonic motion, these components are known
to be in anti-phase with each other, i.e. the correlation between them is
negative. The high frequency inertia force components then balarce (or
%cancel out””) the high frequency excitation components.

VIII.7 Comparisons of the Spccimens by the Random Reaction Force Criterion
and _the Measured Forez

In this section, by using the foregoing experimen*al resulis, we shall
investigate the validity of using the random reaction force c¢riterion ac a
basis for compering the specimen under the given particular conditiors.

Chapter III shows that the magnitudes of the criteria are inversely
proportional to the responses to which they relate, i.e. within the assumptions
that were stated, the response should be proportional to the reciprocal of
the criterion value. Hence, to test the validity of using the inertiz force
c¢riterion, the reciprocal of its values for eack of the seven tested scecimens
should be compared with the measured values of the random reaction forces.

If the ratios of the two sets of values are consistent, thz validity of the
criterion is demonstrated for the particular conditions under consideration.

In section ITY.4.1l, the random reaction force critericn was,derived
and this is essily seea to be proportional to P )/uon] . In this
expression the mass and stiffness ratios are in:luﬁ%g 1mp Ecitly in Wy .
For the purpose of tlis section, these expressions have been evaluzted as they
stand, using the measured values of w and for the second modes of the
different specimens., The raciprocals of the valu¥s so obtained have then been
normalised, for coavenience, to meke the value for Oberst's specimen equal
to 1.0.

To <ompare these values with the measured velues, the same normalising
process has been applied to the measured valves. They are all presented
in Table VII.

Exact agreement between the different rows of this table 3is not to be
expected, bearing in mind that the expression for the criterion wasg developed
after making certain assumptions which were not rsalised in the experiment
(e.g. a flat spectrum of excitation). It would be possible to give an improved
semblance of sgreement by normalising the values such that another specimen
had the unit value. This is a detail which will not be pursued here. It can
be stated with confidence, however, that the use cf the criterion indicztes
correctly the order (i.e., the ¥sequence®™) in which the "damping effectivenesses®
of the diffeient specimens 1%e, The marginally different values for the -

343 and 3M4 specimeiis are the only exceptions te this.

13




VIII.8 Conclusions drawn from Chavter VITI

Close agreement has been found to exist between the measured and
predicted values of the random reaction at the support of tre damped sandwich
specimens. This apvears to confirm the theory of Cnapfer VII and shous {in
particular) that ever with high damping ( ¥ £ 0.9) we have been justiiled
in calculating the response on the essumption thet there is 1°tile or ne
variation in the spectral density of the excitation in the region of the
system resonance.

The part of the random response deriving from the correlation betuween
the inertia force and the external loading has been found to be very significant
for the highly damped specimens but negligible for the more lightly damped
specimens, It appears to become significant when 7 is greater than about

0.15.

It has been found trat the values of the resonant frequencies and
loss factors of the specimens measured by the methods of Chapter VI wey be
used with cenfidence in the theory for prediciing the random response.

The random reac¢tion force criterion has been found to be & reliable

guide « the order (i.e. the sequenqp) of the effectivenesses of the different
sandwich specimens in damping random reaction forces,

14
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Chenter IX

General Conclusions

Detailed conclusions from the different stsges of this report have been
included at the end of most of the chapters (chapters II and IV to VIII).
Only the most important cconclusiors will be reported here.

The study of the damping of reinforced plate structures (without any
damping treatment) has shown thet the damping ratios mey very from 0,005 for
stringer torsion modes of a large model to 0,011 for stringer bending modes
of a smelier model, Measurements made on full scale aeroplane structures
cannot yet be treated with much confidence, but the apoarent values of the
damping ratios were 0.014 to 0.02 for stringer torsion modes, or medes of
sizilar nature, Tnese values could be over-estimates of the true ralues.
hcoustic rediaticn can yield damping ratios of up to 0.016 for some modes,
but for other modes it could yield nothing.

It nas next been shown th2t in order to judge the relstive effective~
ness of different damping treatments and configurations, a comparison of the
magnitudes of the loss factors of the configurations is generally insufficient.
Alternative criteria have therefore been derived, based cn a number of
simmlifying assumptions relating to the system resoonse. These criteria
have then been used to compare two different vnconstrained leyer treatments.
It has thereby been shown that for some applications one treztrent is
superior to the other, but for other applications this superiority is
reversed. According to some criteria there exisis an optimum thickness of
damping treztment to minimise the response of a given plate, butv according to
other criteria the response ccatinuzlly decreases wita increase of irezument
thickness.

The theory of the respon.e of a two-dimensional flat sandwich plate
with a damped core has nexl been developed. The modal loss factors and
stiffnesses have been found to depend on the model wavelength, as sell as on
the core thickness and core dynamic properties. Using the criteria, the
optimum core thicknesses and/or core properties heve been found which
ninimise the random and hermonic response of the plate. For a sandwich
plate of given total weight, the minimum plete response is obtained when the
core is about five times as thick as one of the face-plates, btut the static
stiffness of such a plate is much lower then that of a solid plate cf the
szme weight; this mey not be important in arees of an aeroplane structure which
are designed primerily from acoustic fatigue considerations.

If the solid skin plating of a reel aeroplane structure is replaced
by a sandwich plate having a thick core of optimum properties, a rough
estirate suggests that the r.m.s. stresses and rezctiocn forces due to random
excitetion will be reduced by no more than 90%. Tf the candwich plate hes 2
thin core, the reduction is no more than $0-70%.

Comparing the criterion values for the sandwich plates of optimum
design with those of the piate ireated with an unconstreined layer indicates

A

that the sandwich demping mechanism is more effective 2ll round in reducing

random or harmonic respouse. In merticular, if the treatment weight is 505
of the woight of the metal plate(s) and fa for the sandwich core is 1.0,
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the random stress and reaction force criterion values for the sandwich are
about twice those for the other treated plate. i.e. <be response is aboud

one helf.

The theory for the sandwich plate loss factor and modsl stiffness has
teen partially cenfirmed by the results of harwozic specimens on small
sandwich specimens., The special apparatus t2et hed tc be designed and the
techniques of measurements that had to be deweloped have proved to be
satisfactory. for conducting ascessmeni tesis on different damping treatmerts

and configurations.

The theoretical study of the randon yibration of a heavily damped beanm
has disclosed the importance in calexluting its response of aillowing for the
response component deriving fircm the correlation between the external loading
and the inertia forces exeited by 2%, This term can be ignored, however, if
the loss factor of the system is lexs than about 0.15.

In an experimental invesiigetiocs of the rendom response of heavily
damped beams, close agreement wzs found 49 exist between the response
predicted by the theory and “se measured values. Besides confirming the
general validity of the theory, this a3s0 showed that values of the loss
factors and resopant frecuencies measured in the harmonmic tests could be used
with confidence to predict ti:e random regponse. For the particular specimens
and conditions of test, the random reaction force criterion was found to be a
reliable guide to the relative effectiveness of the different specimens in

attepuating the random reaction force.

Further werk in this £is]ld of damping studies should deal with the
damping and stiffuness of sendwich plates with boundary conditions othe. than
the simple supoorts dealt with fn this repert. The one-dimensional,
fully~fixed sandwich plate should be amenable to exact theoreticel treatment,
but aporoximate methods will prokably be required for plates r:inforced by
flexible stiffeners. Sysbematic experimental studies of the harmonie
and random vibration of stiffened damped plates will also be required.
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Specimen Hycadanmp Pmadamp Cberst!s Mg
Face -plate 0.0188 0.0388 0.025 0.0348
thic¥ness, in.
Core thickness 1.72 0.204 2.90 0.055 , 0.117
ratio, T 0.166 , 0.222
Width, in 0.30 0.30 0.30 0,30
Length between
ovnoorte, in, 10.54 10.54 10.54 10.54,
Face-rlate E, 9.7 10.95 10.2 10.35
1b. in—%2, x10 %10 x10 x10
Table” III Dimensions and E's of Specimens
Frequency i
c.p.s. - .
Temperature 30 100 300 1000
0°C G 22/ £92 990 270
g 1.28 1.11 1,906} .97
23% G 32 58 103 216
£ 1.13 1.30 1.37 1.25

Table IV  Maker's Data on IM's Adhesive Damping Film
(G is in 1b.i0"? units)
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Specimen Yode No. ?;:?2?;?); J) N 4

1 56 0.074 4.59

2 192 0.20 3.32
HYCADAMP 3 374 0.34 2.39

4 582 0.42 1.78 i

5 832 0.5% 1.43 |

1 7, 0.048 1.66 5

2 272 0.041 1.34
DYNADAHP 3 533 0.052 1.01

4 830 0.057 0,78

5 1180 0.060 0.54

1 60 0.55 2099

2 178 0.86 1.42°
OBERST 3 322 G.97 0.87

A 487 0.95 0.63

5 690 0.88 0.54

1 55 0.16 0.94

2 199 0.31 0.78
3M1 3 425 0.31 0.67

4 700 0.33 0.57

) 1056 0.3 0.53

1 53 0.28 6.87

2 193 0440 0.69
M2 3 386 0.43 0.52

4 &64 0.44 0.51

5 975 C.44 0.L4

1l 51 0.39 0.79

2 175 0.52 0.55
M3 3 374 0.45 0.51

4 618 0.42 0.43

1 53 0.40 .86

2 185 0.50 0.64
ML 3 390 0.52 0.54

4 €05 0.5 0.46

5 935 0.44 0.42
Table v Values of f (= w "/211'), K and R from experiments

on the Sandwich Specimens
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Specimen

Oberst

Dyne..

Hyca.

Criterion
Rzciprocels
Small Damping

Criterion
Reciprocal
Large Demping

Nermaiised
Response,

Normalised
Response,
Set B

1.0

1.0

1’0

5.25

5.9

4. 62

2.04

2,22

1.2

1.8

Table VIT
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Compariscn of Normelised Values of Measured Response with
Normalised Critericn Reciprocals
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FiI. 2 NATURAL FREQUENCIES OF GVERALL MODES OF A
FUSELAGE STRUCTURE

«

1
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Diametar = 106, Length = 30t
Stringer Pitch £ Thin. Frame Pitch = 20in.
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Frequencies quoted were measured on an actual tail-plane

Fic.4 RIB-SKIN MODES OF TAIL-PLANE STRUCTURE

129

:
i

i

1

'
S T S R T

iy

P




¢

o e T

3

RANH eren s wvera ! eninn

plunyayop — =

9ol Weds UG o

3NIONI L30 (NOAV, '¥'¥ WO¥Nd WH.LD:HdS

e e ar e “Wv"':_,}v
R -7 <
.- PN - L 5

-~

wda « AANIADIUA
leo & ¢ ¢

3

S T P A & ks e

Q
&

qp - Kisuag yossoady samog

g

120

2




|
i "HOUUV 'AW E¥1 VIAIT FUNSEIUS TIVEIAC ' TIAIT WES LV YWO0D QNG WiV —_—
; VHLO3dS 3UNSEIdd YIAYT AUVANNCE WDidAL  92'9td : B
2 sdo ~ AONBNDIURS
, €00 0o\ oGa'ot 000 ool
ol
3 /
// = 8 @
s AP~
Kyipueg
psonds
é |
-~ o 1 oo w
oA, . wnad “ l
ﬂ A
| AT Jakieny nu&_ﬁczﬂm _ | - |
— : oit | DS
N ,.x. ' ;Ng”
PRt |
W N




200 }
ﬁ

SPECTRAL
DEMGITY

100

(Arbiteasy
Scale) {
o ——
100 200 400 &Co 8950 toco

FREQUENCY cps.

FIg.7 SPECTRUM OF RANDOM STRESS (K A FUSELAGE PANEL

e

300

450

500

FREQUENCY cps.

Fi6.8 SPECTRUM OF RANDOM STRES3 IN TAILPLANE SKiN

132

1200




N VR BN ok e WA AN g, YA e s

s R TRLY S

STIFFENED

X PolymeR
PLATE
92 ‘UNCONSTRAINED LAYER CONFIGURATION
(eq. AQUAPLES)
THIN FoiL

SOFT POLYMER

9b ' DAMPING TAPE  CONFIGURATION

SOFT POLYMER

~PLATE

9c  DOUBLE-SKIN' CONFIGURATION

Fi6.D ENERGY DISSIPATING MECHANISMS OF CONSTRAINED
AMD UNCONSTRAINED LAYER TREATMENTS

133




o
6
4
E. .
1ec
in2 157
/:—‘“ 20¢
2 ,/7- o
"]
I
1co 200 400  S00 809 1000
FREQUENCY cps
1-0
o8
06
o4
K \\ 1T %0c
o2 \\ »
\ 20°c
\. .a
<08 10C
00 200 400 §30 #0000
FREQUENCY eopsS.
FIG.IO YOUNG’S MODULUS E' AND LOSS FACTOR v OF

AN EARLY UNCONSTRAINED LAYER TREATMENT

134




FiG. i1

tosf —S0T 3
/,—-»——'“‘/‘” /,.—*/
5
////,—\g— /
// _,4»“(’/
] ‘a‘{ﬂ ]
. // //
1o
7.; L~ \0""
2 / ,/
P e
L7
‘g{ /’/ L~
- A /
é / / 70
(<] L1
g 10 d
= P
< 5 ]
& f—""1
1o
20 40 68000 20C 400 600 1050 2000
l~0: e S —
co =BG » hﬁ*’“‘\(_
3 - oy
s
ls-,—\‘k)‘c \y;c\.
a o2 - ‘“@.\\
- \»% ~———
<§ o B
w 0-08
15—
\\N
~—
Q02 )
Qo

THE COMPLEX SHEAR MODULUS, 6{1+i8) OF A
HIGH DAMPING MATERIAL vs. FREQUENCY

Frequency —c p.s

135

¢,
20 40 608010 200 QMO 00 PO 200




s dant

s kb oy

v

L &bad Lt Rt

40 s

- ,5:?:32;?;?,:% 4 . .

2R i T
(w."»;lj' & -

NSy : ,
b
FIG.i2 THE BEAM AND JOINT USED IN THE RIVET DAMPING
INVESTIGATION
i3¢




W ONIGVOT QIONOOUd
! Y312V OGNV 380438 ‘S3AVid QVITV NI LAY NNNSYILNNOD
M "WIC 87, INONIS V ¥OL ‘,d/ V' ANIIDII4B0D NOLLYJISSIO ADUIND FHL

1]
W (“ar) apaqdey $o07 ALY
w 001 o 0\ 010 1o
| °r . 0
| R
m 100'0 /- sTo
| /
g /
w 3 2600 J / 050
| g
o
m b 2060 ——f $L'0
| - \
, &

<

00 < 0ot
k I

900°G ST

ONIQVOT GAONOI0Yd ¥3LdVY  JI3AYND

ONIQVOT G3ONOTIOYd Jdo43@ ¢ § 3AYND

€1 9id

(,01% Jiery wadiyyoey venedieng Absauy

YN ' Ay DN F e i A TR AT g e Vs
&M%&wﬁ/fﬁ e SN g i A e By e

137




TN e aen afee 187 gy
—ina aotan . . .o P A A i
. N .
; . AR -

16

&Th
e
®

|

N
1
i2

3

Mumber of Cycles (millicas)

N\

5

\ \
L
y

Rivet
foad
=phb
&

!

3

4

8
Durction of Loading (Hours)
4

S
.

z

2
H

o
o

WITH DURATION OF LOADING

1.25
.00
075
a.50
025
o
FIG.14 THE VARIATION OF THE ENERGY DISSIPATION COEFFICIENT

(901 * ,.81°01) WANH0D uorpodissyy  Abusiy

A S VSO 4 Al P e Saran v o SAe

4IRS e o A i £ g




R A AT B L S MRS L5 BT i Al
B R

’ ak 4 * . «
- I o RPA e - .
+ - - am—
B - - - :
(2]
‘ e
i N
v

u.ﬁz

“ (O

A3

» o i

.

i

N

P ~
_ ;

s

o

' i

f

1
4

SANIOP IVIIANIA! ATIVNIWNON dO
SINIIDIAIZ0D NOLLVISSIA AOYWINI 3HL 40 NOSIHVLWOD  GI'9id

M i

(‘al) wpmdwy poo 38ALY
o'l 1-0 -

\‘Olllﬂqquliog R

o0t

m
m \\ y A m .Q G.
A | / 1" ~ ¥ /
v “ \ : -m. .m. o
_. j / \ — B
_ : L |
| w 8.0 2 .
H o . A
| ‘ <8 L. |
~ ,J
ﬂ ! \ v slo .......... :
. 4 'y )
T A 0,
i / 5.
w o+
}
¢
Y
3
it
%
B i i




ACQUSTIC DAMPING RATIO
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which minimise the response. Random stresses in a structure with thicke
cored sandwich plating have been estimated to be not less than 10% of
those in a solid-plate stxucture of equal weight.

Harmonic experiments or small sardwich specimens have confirmed the
theory for the loss factor and stiffness. The special apparatus and

techniques of measurement developed for the experiment have been used to
assess three commercial sandwich specimens.

A new approach has been initiated to estimate the random response
of a very heavily damped system. Its validity has been confirmed for

simple random excitation conditions by experiments on the sandwich
specinrens.,
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